Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Пономарева Светлана Викторовна Должность: Проректор по УР и НО Дата подписания: 22.09.2023 22:07:49 Уникальный программный ключ:

bb52f9594112644617366662977b97887139b1324 И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

(ДГТУ)

АВИАЦИОННО-ТЕХНОЛОГИЧЕСКИЙ КОЛЛЕДЖ

		УТВЕРЖДАЮ
		Директор колледжа
		В.А. Зибров
‹	>>	2023 г.

Методические указания

Для выполнения практических работ по дисциплине

ОП.05 Процессы формообразования и инструменты

для студентов специальности

15.02.16 Технология машиностроения

Разработчик: Преподаватель	Авиацио	нного колледж	а ДІ	ТТУ		<u>.</u> Ф.И.О.		
				<u> </u>		20) <u>23</u> г.	
Методические «	-			-	на	заседании	цикловой	комиссии
Протокол №	OT «	<u> </u>	_20 <u>2</u>	<u>33</u> r				
Председатель ц	икловой	комиссии						
				<u>«</u>	»	202	<u>23</u> Γ.	
Методические <u>15.02.16 Тех</u>		редназначены ,		студентов	спец	иальности		

RPCIRMUYECKOA POGOMAN1

ЗАДАНИЕ: На токарно-винторезном станке модели 16К20 производится обточка заготовки с диаметра Д до диаметра д. Длина обрабатываемой поверхности.

НЕОБХОДИМО: 1. Выбрать режущий инструмент и назначить его геометрические параметры.

- 2. Назначить режимы обработки.
- 3. Определить основное время обработки.

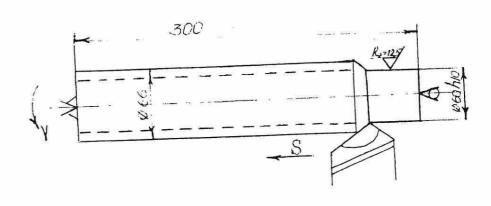
ЦЕЛЬ РАБОТЫ: 1. Закрепление знаний полученных на уроке по теме 6.5.

2. Получение навыков пользования справочной литературой при расчете режимов резания.

ОБЕСПЕЧЕНИЕ ЗАНЯТИЙ:

- 1.«Справочник мастера токарного участка» С.Ф.Фомин 1971 г.
- 2. «Справочник молодого инструментальщика» Гладишин 1973 г.
- 3. «Общемашиностроительные нормативы для технического нормирования работ на металлорежущих станках Машиностроение» 1974г
- 1974г. 4. «Сборник задач и примеров по резанию металлов и режущего инструмента» Нефедов 1990 год

Пример последовательности расчетов и выполнения задания:


На токарно–винторезном станке модели 16К20 производится обточка на проход вала с Д=66мм до d=60h10 на длине l=300мм. Обработка черновая R_a =12,5мм (Δ 5), заготовка – паковка, материал – сталь 40X, с σ_B =720 мПа (\sim 72кгс/мм²). Способ крепление заготовки – в центрах. Система СПИД – жесткая.

НЕОБХОДИМО: 1. Выбрать режущий инструмент и назначить его геометрические параметры.

- 2. Назначить режимы обработки.
- 3. Определить основные время обработки.

1

3

- 1. Выбираем режущий инструмент и назначаем его геометрию:
- 1. Выбираем резец прямой проходной с размерами 25x20x140 (1 стр. 261) и назначаем материал режущей части Т5К10 (2 стр. 24)
 - 2. Назначаем геометрические параметры режущей части:

 $\alpha=8^{0}$, $\gamma=12-15^{0}$, $\varphi=45^{0}$, $\varphi'=10-15^{0}$, $\lambda=0-5^{0}$.

Форма передней поверхности (ФПП) – плоская с фаской или радиусная с фаской (1 срт. 36 – 38).

- 2. Назначаем режим обработки:
 - 1. Определяем глубину резания: при продольном точении

t=(D-d)/2=(66-60)/2=3MM.

- 2. Назначаем подачу: для чернового точения используем карту 1 (3), при глубине резания до 3 мм. Включительно при обработке до 100мм и резцов сечением державки 25х25 принимаем S табл. = 1 мм/об.
 - 3. Корректируем подачу по паспорту станка (4стр. 421) S ст =1 мм/об.
 - 4. Назначаем скорость резания: Vpe3 = Vтабл * Km* Ku * Kп

где Vтабл -табличная скорости резания = 65 м/мин (3к. 6л1)

Км -поправочный коэффициент на материал заготовки = 0,8 (3к6л2)

Кп -коэффициент на поверхности заготовки = 0,8, т. к. по условию заготовка – паковка (3к6л2)

Ки -поправочный коэффициент на материал режущий части резца = 1, т. к. по условию мы выбираем резец из Т5К10 и

Vpe3=65*0.8*1*0.8=41.6 м/мин.

5. Опредиляем частоту вращения шпинделя

 $n=(1000* Vpe₃)/\pi*Д=(1000*41.6)/3.14*66=200.7$ об/мин.

6. Корректируем частоту по паспорту

(4 стр.421). Π_{ct} =200 об/мин

7. Определяем действительную скорость резания

 $V_{\text{Д}} = (\pi^* \text{Д* } \Pi_{\text{ст}})/1000 = (3.14*60*200)/1000 = 41.4 \text{ м/мин.}$

8. Проверяем возможность обработки по мощности по условию

3. Резание возможно т. к. Nш π =7.5 кBт >Nрез=3.4 кBт

Определяем основное время обработки

 $T_0=(1+y+\Delta)/\pi_{c\tau}^*$ Sct мин.

1 - путь резца в процессе обработки = 300мм из условия, Где у - величина врезания, Δ -величина перебега.

 $(y+\Delta)=6$ мм определяется вместе по (3 стр. 197).

 $T_0 = (300+6)/200 = 1.53$ мин

ВАРИАНТЫ ЗАДАНИЯ

		3		70 Me				
	Материал заготовки	Заготовка	Способ крепл	Обработка и параметр шерох. поверх. после обработки в Ra мкм	Система	Д	d	1
1.	Сталь 5С ов=600мПа (~60кгс/ мм2)	Поковка	В центрах	Обтач. на проход, черная Ra=12.5 мкм (чернов3)	средняя	90	83h16	290
2.	Чугун серый НВ=160	отлив. коркой	в патрон	обтач. На проход Ra=25мкм (чернов3)	жесткая	100	94h14	60
3.	Сталь 45 с ов =680мПа (~68кгс/	прока предв. обрабо.	в	oora		52.5	50h9	180

63								
4.	мм) Сталь 40X ов =750мПа (~75кгс/	штампов. предв. обраб.	в центрах	обтач. на проход Ra=6.3мкм (получс4)	средняя	122.5	120h12	250
5.	мм2) Чугун серый НВ220	отливка без порки	в патроне	обтач. на проход Ra=2 мкм	жесткая	152	150h9	80
6	Сталь 20 ов =500мПа (~50кгс/ мм2	штамповка с поркой	в центрах	обтач. на проход Ra=25(3)	средняя	72	67h16	240

17 р стим Станке производят сверление отверстия диаметром D и глубиной 1.

НЕОБХОДИМО: 1. Выбрать режущий инструмент и назначить его геометрические параметры.

2. Назначить режимы обработки.

3. Определить основное время обработки.

ЦЕЛЬ РАБОТЫ: 1. Закрепить знания полученные на уроке по теме 8.7.

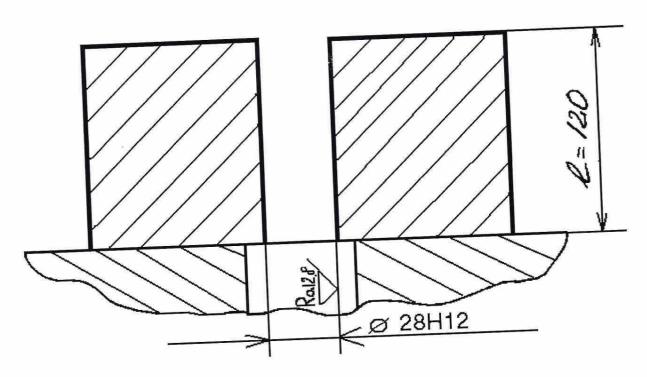
2. Получение студентами навыков пользования справочной технической литературой.

ОБЕСПЕЧЕНИЕ ЗАНЯТИЯ: 1. «Справочник мастера токарного участка» С.Ф. Фомин, 1971.

2. «Справочник молодого инструментальщика» С.П. Гладилин, 1973.

3. «Общемашиностроительные нормативы для технического нормирования работ на металлорежущих станках».

4. «Сборник задач и примеров по резанию металлов и режущему инструменту» Н.А. Нефедов, 1990.


ПРИМЕР ПОСЛЕДОВАТЕЛЬНОСТИ РАСЧЕТОВ И ВЫПОЛНЕНИЯ ЗАДАНИЯ.

На вертикально-сверлильном станке модели 2H135 сверлят с5квозное отверстие диаметром D=28H12 на глубину l=120 мм. Материал заготовки — Сталь 40X с $\sigma_{\rm B}=700$ МПа (≈ 70 кгс/мм²), заготовка — прокат горячекатаный. Охлаждение — эмульсия. Обработка — черновая $R_{\rm A}=12,5$ мкм.

НЕОБХОДИМО: 1. Выбрать режущий инструмент и назначить его геометрические параметры.

2. Назначить режимы обработки.

3. Определить основное время обработки.

- Выбираем режущий инструмент и назначаем его геометрические параметры:
- 1. В зависимости от диаметра отверстия и его глубины выбираем спиральное 2-х пёрое с коническим хвостовиком диаметром 28х295 с 1 = 175 км (2 стр. 56), материал режущий части сверла Р6М5 (1 стр. 25).
- 2. Назначаем геометрические параметры режущей части сверла: передний угол ү определяется в зависимости от диаметра, на котором рассматривается угол ү, который определяется из уравнения:

$$tg\gamma = \frac{tg\omega}{\sin\varphi} * \frac{\hat{d}_r}{D}$$

где d_r – диаметр на режущей части, на котором рассматриваются геометрические

параметры;
$$\alpha = 12 - 9^{\circ}$$
, $2\phi = 116 - 118^{\circ}$, $\omega = 30^{\circ}$, $\psi = 52 - 55^{\circ}$ (2 стр. 63-68).

Форма заточки сверла (Φ 3C) – ДП (2 стр. 61-62).

- Назначаем режимы резания. II.
- 1. Определяем глубину резания:

$$t = \frac{D}{2} = \frac{28}{2} = 14 \text{ MM}.$$

- 2. Назначаем подачу: $S_0 = 0.22 0.28$ мм/об (подачи 3 группы, т.к. H12 это 4-й класс точности), (3 к. 41).
- 3. Корректируем подачу по паспорту станка (4 стр. 422), $S_{ct} = 0.28$ мм/об.
- 4. Назначаем скорость резания:

$$V_{\text{рез}} = V_{\text{табл}} * K_{\text{M}} * K_{\text{U}} * K_{\text{d}},$$

 $V_{\text{табл}} = 27,5$ м/мин – табличная скорость резания (3 к. 42);

 $K_{\text{M}} = 8$ – поправочный коэффициент на материал заготовки из Стали 40X;

 $K_{\text{и}} = 1$ - поправочный коэффициент на материал инструмента (Р18 и Р6М5 имеет одинаковые режущие свойства);

 $K_d = 0.95$ - поправочный коэффициент на глубину сверления, определяется по таблице Kd (3 к. 42) в зависимости от отношения $\frac{l}{D} = \frac{120}{28} = 4$;

Vpe3 =
$$27.5 * 1 * 0.8 * 0.95 = 20.9$$
 м/мин.

5. Определяем частоту вращения шнипеля:

$$n_{um} = \frac{1000 * Vpes}{\Pi * D} = \frac{1000 * 20.9}{3.14 * 28} = 237.7 \text{ об/мин.}$$

6. Корректируем частоту вращения по паспорту станка: neт = 250 об/мин (то повышение расчетной частоты не более чем на 15%).

$$V\partial = \frac{\Pi * D * n_{cm}}{1000} = \frac{3.14 * 28 * 250}{1000} = 22$$
 м/мин.

- 7. Определяем действительную скорость резания:
- 8. Проверяем возможность обработки по мощности по условию $N_{\text{шт}} \ge N_{\text{рез.}}$

Проверяем возможность страна
$$N_{\text{шт}} = N_{\text{эл.д.}} * \eta = 4,5 * 0,8 = 3,6 \text{ кВт (4 стр. 422);}$$

$$N_{pe3} = 2,5 \text{ кВт } (3 \text{ к. 43}).$$

Резание возможно т.к. $N_{\text{шт}} = 3,6 \text{ кBT} > N_{\text{рез}} = 2,5 \text{ кBт}.$

Определяем основное время обработки: III.

$$To = \frac{l+y+\Delta}{n_{cm} * S_{cm}} = \frac{120+16}{250*0.28} = 1.94 \text{ мин.}$$

ВАРИАНТЫ ЗАДАНИЯ.

Материал заготовки	D, мм	L,	Отверсти е	Обработка	Модель станка
20	15H12	60	Глухое	С охлажд.	2H125
Сталь 3, ов = 460 МПа, (≈46 кгс/мм²). Чугун серый, НВ = 160	16H12	65	Сквозное	Без охлажд.	2H135
	18H12	70	Глухое	С охлажд.	2H125
Сталь 40, ов = 660 МПа, (≈60 КГС/ММ ⁻). Чугун серый, НВ = 180	20H12	45	Сквозное	Без охлажд.	2H135
	22H12	30	Сквозное	Без охлажд.	2H135
Сталь Р6М5, ов = 850 МПа, (≈85	25H12	40	Сквозное	С охлажд.	2H135
	Сталь 3, ов = 460 МПа, (≈46 кгс/мм²). Чугун серый, НВ = 160 Сталь 40, ов = 660 МПа, (≈60 кгс/мм²). Чугун серый, НВ = 180 Чугун серый, НВ = 190	Материал заготовки Сталь 3, ов = 460 МПа, (≈46 кгс/мм²). 15H12 Чугун серый, НВ = 160 16H12 Сталь 40, ов = 660 МПа, (≈60 кгс/мм²). 18H12 Чугун серый, НВ = 180 20H12 Чугун серый, НВ = 190 22H12 Сталь Р6М5, ов = 850 МПа, (≈85) 25H12	Материал заготовки мм Сталь 3, ов = 460 МПа, (≈46 кгс/мм²). 15H12 60 Чугун серый, НВ = 160 16H12 65 Сталь 40, ов = 660 МПа, (≈60 кгс/мм²). 18H12 70 Чугун серый, НВ = 180 20H12 45 Чугун серый, НВ = 190 22H12 30 Сталь Р6М5, ов = 850 МПа, (≈85 25H12 40	Материал заготовки В, мм е Сталь 3, ов = 460 МПа, (≈46 кгс/мм²). 15H12 60 Глухое Чугун серый, НВ = 160 16H12 65 Сквозное Сталь 40, ов = 660 МПа, (≈60 кгс/мм²). 18H12 70 Глухое Чугун серый, НВ = 180 20H12 45 Сквозное Чугун серый, НВ = 190 22H12 30 Сквозное Сталь Р6М5, ов = 850 МПа, (≈85 25H12 40 Сквозное	Материал заготовки D, мм E, мм e Сталь 3, σв = 460 МПа, (≈46 кгс/мм²). 15H12 60 Глухое С охлажд. Чугун серый, НВ = 160 16H12 65 Сквозное Без охлажд. Сталь 40, σв = 660 МПа, (≈60 кгс/мм²). 18H12 70 Глухое С охлажд. Чугун серый, НВ = 180 20H12 45 Сквозное Без охлажд. Чугун серый, НВ = 190 22H12 30 Сквозное Без охлажд. Сталь Р6М5, σв = 850 МПа, (≈85 25H12 40 Сквозное С охлажд.

3АДАНИЕ: На вертикально-сверлильном станке 2H135 зенкеруют предварительно обработанное отверстие с d до D на глубину l.

НЕОБХОДИМО: 1. Выбрать режущий инструмент и назначить его геометрические параметры.

2. Назначить режимы обработки.

3. Определить основное время обработки.

ЦЕЛЬ ЗАНЯТИЯ: 1. Практически закрепить знания, полученные при изучении темы 8.7.

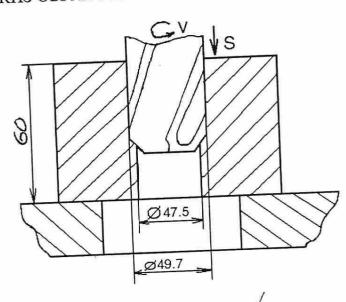
2. Приобрести навык пользования справочной литературой.

ОБЕСПЕЧЕНИЕ ЗАНЯТИЯ: 1. «Справочник молодого инструментальщика» А.Н. Гладилин, «Высшая школа», 1973.

2. «Общемашиностроительные нормативы для технического нормирования работ на металлорежущих станках», «Машиностроение», 1974.

3. «Сборник задач и примеров по резанию металлов и режущему инструменту» Н.А. Нефедов, К.А. Осипов, «Машиностроение», 1990.

ПРИМЕР ПОСЛЕДОВАТЕЛЬНОСТИ РАСЧЕТОВ И ВЫПОЛНЕНИЯ ЗАДАНИЯ.


На вертикально-сверлильном станке 2H135 зенкеруют предварительно обработанное отверстие (сквозное) с d=47,5 мм до D=49,7 мм на глубину l=60 мм (под последующее развертывание). Материал заготовки Чугун серый с HB=210. Обработка без охлаждения.

НЕОБХОДИМО: 1. Выбрать режущий инструмент и назначить его геометрические параметры.

2. Назначить режимы обработки.

3. Определить основное время обработки.

ЭСКИЗ ОБРАБОТКИ.

- Выбрать режущий инструмент и назначить его геометрические параметры. РЕШЕНИЕ:
- 1. Выбрать зенкер насадкой с D = 49,7 мм, z = 4 с пластинками TC ВК8 (1 стр. 77-81).
- 2. Назначаем геометрические параметры:

$$\alpha = 8^{\circ}$$
, $\gamma = 0^{\circ}$, $\omega = 10^{\circ}$, $\varphi = 60^{\circ}$.

- Назначаем режимы обработки. II.
- 1. Определяем глубину резания:

$$t = \frac{D-d}{2} = \frac{49.7 - 47.5}{2} = 1.1 \text{ MM}.$$

- 2. Назначаем подачу $S_0 = 1,1 \div 1,3$ мм/об (2 карт. 73).
- 3. Корректируем подачу по пасторту станка $S_0 = 1,12$ мм/об (3 стр. 422).
- 4. Определяем скорость резания:

Определяем скорость резания.
$$V_{pe3} = V_{табл} * K_{M} * K_{u} * K_{n} = 68 * 1 * 1 * 1 = 68 м/мин.$$

$$V_{\text{табл}} = 68 \text{ м/мин};$$

$$V_{\text{табл}} = 68 \text{ м/мин},$$
 $K_{\text{M}} = 1 \text{ (твердость HB} = 210 есть в диапозоне 170-255);}$

$$K_n = 1$$
 (отверстие без корки).

5. Определяем частоту вращения шнипеля:

$$n = \frac{1000 * Vpe3}{\Pi * D} = \frac{1000 * 68}{3.14 * 49.7} = 437$$
 об/мин.

- 6. Корректируем частоту вращения шпинделя по паспорту станка: $n_{CT} = 355$ об/мин.

$$n_{\text{ст}} = 355 \text{ бо/мин.}$$
7. Определяем действительную скорость резания:
$$V\partial = \frac{\Pi^* D^* n_{cm}}{1000} = \frac{3.14^* 49.7^* 355}{1000} = 55.5 \text{ м/мин}$$

8. Проводим проверку возможности обработки по мощности по условию $N_{\text{шт}} \ge N_{\text{рез.}}$

Проводим проверку возможности обрасти. 122);
$$N_{\text{шт}} = N_{\text{эл.д.}} * \eta = 4,5 * 0,8 = 3,6 \text{ кВт (3 стр. 422);}$$

$$N_{pes} = 3,0$$
 кВт (2 карт. 77, лист. 1, 2).

$$N_{pe3} = 3.0 \text{ кВт}$$
 (2 карт. 77, якет. 1, 2).
 Резание возможно, т.к. $N_{\text{шт}} = 3.6 \text{ кВт} > N_{pe3} = 3 \text{ кВт}$.

Определяем основное время обработки: III.

Определяем основное время бера

$$T_0 = \frac{l + y + \Delta}{n_{cm} * S_{cm}} = \frac{60 + 5}{355 * 1.12} = 0.16$$
 мин;

$$y+\Delta = 5$$
 мм (2 прил. 4, лист 2).

ВАРИАНТЫ ЗАДАНИЙ К ПРАКТИЧЕСКОМУ ЗАНЯТИЮ № 3

		D, мм	D,	L,	Отверстие	Обработка
Вари	Материал заготовки	D, MM	MM	MM	1	
ант	× IID 160	2H11	22,6	40	Сквозное	С охлажд.
1	Чугун серый, HB = 160	30H11	27,6	15	Сквозное	Без охлаж.
2	Ст. 65 Γ , $\sigma_B = 850$ МПа, (≈ 85 кгс/мм ²).	24,8H11	.23	55	Сквозное	С охлажд.
3.	Ст. 40, ов = 580 МПа, (≈58 кгс/мм²).	29,8H12	28	45	Сквозное	С охлажд.
4.	Чугун серый, НВ = 220	35H12	32	60	Глухое	С охлажд.
5.	Ст. 40, $\sigma_B = 600 \text{ MHa}$, ($\approx 60 \text{ кгс/мм}^2$).	100		40	Сквозное	С охлажд.
6.	Ст. 40, $\sigma_B = 850 \text{ M}\Pi a$, (≈85 кгс/мм²).	37H12	34	40	CKBOSHOC	0 0.1114

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ №8.

ЗАДАНИЕ: На вертикально-сверлильном станке 2H125 развертывают отверстие с диаметра d до D на глубину l. Параметры шероховатости отверстия $R_a = 2,0$ мкм ($\nabla 6$).

НЕОБХОДИМО: 1. Выбрать режущий инструмент и назначить его геометрические параметры.

2. Назначить режимы обработки.

3. Определить основное время обработки.

ОБЕСПЕЧЕНИЕ ЗАНЯТИЯ: то же, что и в п/з №8.

ПРИМЕР ПОСЛЕДОВАТЕЛЬНОСТИ РАСЧЕТОВ И ВЫПОЛНЕНИЯ ЗАДАНИЯ.

Последовательность расчета ведется такая же, что и в п/з №8. Данные о конструктивных и геометрических параметрах выбираем (1 карт. 63, 64, 66 или 79, 80, 81).

Проверку по мощности можно не делать, т.к. при развертывании припуск на обработку десятые доли мм и потребная мощность незначительная.

ВАРИАНТЫ ЗАДАНИЙ К ПРАКТИЧЕСКОМУ ЗАНЯТИЮ №8.

D	Моторуюн заготоруи	D, мм	D,	L,	Отверстие	Обработка
Вари	Материал заготовки	(A)	MM	MM		
ант	G 45 - 700 MHz (~70 kmc/mm²)	20H9	19,7	30	Глухое	С охлажд.
1	Ст. 45, ов = 700 МПа, (≈70 кгс/мм²).	22H9	21,8	60	Сквозное	Без охлаж.
2	Чугун серый, HB = 170	27H9	26,4	40	Сквозное	Без охлаж.
3	Ст. Р6М3, ов=830 МПа, (≈83 кгс/мм²).	35H10	34,7	50	Сквозное	Без охлаж.
4	Чугун серый, HB = 220	50H9	49,4	40	Глухое	С охлажд.
5	Ст. 40X, $\sigma_B = 700 \text{ M}\Pi a$, ($\approx 70 \text{ krc/mm}^2$).		31,7	20	Непрх.	Без охлаж.
6.	Ст. Р6М5, ов=850 МПа, (≈85 кгс/мм²).	32H10	51,7	20	Tionph.	

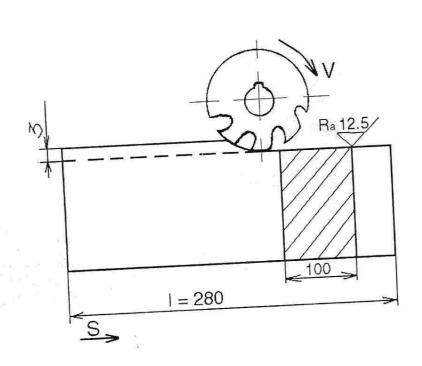
MPCIKMUYECKEIR POLEOMG N4-5

станке 6Т82Г горизонтально-фрезерном цилиндрическое фрезерование плоской поверхности шириной В=100 мм и длиной I=280 мм. Припуск на обработку h=3 мм, обработка черновая с охлаждением. Обрабатываемый материал Сталь 45 с $\sigma_B = 65$ кгс/мм².

НЕОБХОДИМО: 1. Выбрать режущий инструмент и назначить его геометрию.

- 2. Определить режимы обработки.
- 3. Определить основное время обработки.

ЦЕЛЬ ЗАНЯТИЯ: 1. Закрепить знания, полученные на уроке по теме 4.2, 4.8 «Элементы резания и среда при фрезеровании», «Расчет режимов резания при фрезеровании».


2. Получить навык пользования справочной технической литературой.

ОБЕСПЕЧЕНИЕ ЗАНЯТИЯ: 1. "Справочник молодого инструментальщика". С.П. Гладилин, 1973.

- ДЛЯ нормативы 2. Общемашиностроительные работ на нормирования технического металорежущих станках.
- . 3. Сборник задач и примеров по резанию металлов и режущему инструменту.

ВЫПОЛНЕНИЕ ЗАДАНИЯ

ЭСКИЗ ОБРАБОТКИ

- геометрические его назначаем Выбираем режущий инструмент и I.
- 1. Выбираем фрезу цилиндрическую со вставными ножами из Р6М5. При t до 5мм применяют стандартную цилиндрическую фрезу диаметр 90, c z=8 и
- 2. Определяем геометрические элементы режущей части зуба (1 стр. 165-168) или (3 стр. 196).

 $\gamma=15^{\circ}$, $\alpha=12^{\circ}$.

Назначаем режим резания.

1. Устанавливаем глубину резания.

t = h = 3 мм (из условия задания).

2. Назначаем подачу на зуб фрезы.

 S_z = 0,12 ÷ 0,2 (2 стр. 122) для станка с N=705 кВт принимаем S_z = 0,2 мм/зуб.

3. Назначаем период стойки фрезы. Т=180 мин (2 стр. 290).

4. Определяем скорость резания.

 $V_{pe3} = V_{табл} * K_{M} * K_{H} * K_{n} \quad (M/MИН);$

 $V_{\text{табл}} = 37$ м/мин (2 стр. 133) — табличная скорость резания;

 $K_M = 1,2 (2, \text{crp. } 17);$

 $K_{\mu} = 1,0 \ (2 \text{ crp. } 133);$

 $K_n = 1.0 (2 \text{ crp. } 133).$

5. Определяем частоту вращения шпинделя.

$$n = \frac{1000 * V \text{рез}}{\Pi * D\phi} = \frac{1000 * 44,4}{3,14 * 90} = 157 \text{ об/мин.}$$

6. Корректируем частоту по паспорту станка.

ncт = 160 об/мин (3 стр. 422).

7. Определяем действительную скорость резания.

Определяем деиствительную ексреста
$$V\partial = \frac{\Pi * D\phi * n_{cm}}{1000} = \frac{3.14 * 90 * 160}{1000} = 45.2 \text{ м/мин}$$

8. Определяем минутную подачу.

 $S_M = S_Z * Z * nct = 0,2 * 8 * 160 = 256$ мм/мин.

9. Корректируем подачу по паспорту.

 $S_{MCT} = 250$ мм/мин (3 стр. 422).

10. Проверяем возможность обработки по мощности по условию $N_{\text{шт}} \ge N_{\text{рез}}$.

 $N_{pe3} = 5,3 \text{ kBt};$

 $N_{\text{шт}} = N_{\text{эл.д.}} * \eta = 7,5 * 0,8 = 6 \text{ кВт.}$ Резание возможно, т.к. $N_{\text{шт}} = 6 \text{ кB}_{\text{T}} > N_{\text{рез}} = 5,3 \text{ кB}_{\text{T}}.$

Определяем основное время обработки. III.

Определяем основное в
$$T_0 = \frac{l + y + \Delta}{S_{Mem}} = \frac{280 + 19}{250} = 1,196 \text{ мин.}$$

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ №14

производится горизонтально-фрезерном станке 6Τ82Γ фрезерование 6-ти стружечных прямых канавок с угловым профилем, тлубиной ЗАДАНИЕ: h=4 мм на длине l=60 мм. Материал заготовки Сталь 40X с $\sigma_B=75$ кгс/мм². Обработка чистовая $R_a = 3,2$ мкм с охлаждением. Система СПИД – жесткая.

НЕОБХОДИМО: 1. Выбрать режущий инструмент и назначить его геометрию.

- 2. Определить режимы обработки.
- 3. Определить основное время обработки.

Выполнение работы ведется в той же последовательности, что и в занятиии №8, однако при выборе фрезы необходимо ориентироваться по (2 к. 194), т.е. выбирать фрезу в зависимости от ширины канавки и глубины. Подачи выбираются по (2 к. 194).

Скорость резания определяется по (2 к. 196).

Мощность потребная на резание определяется по (2 к. 197).

padoma No MPGKMLIYECK CIR

ЗАДАНИЕ: На вертикально-фрезном станке 6Т13 производится торцевое фрезерование плоской поверхности шириной $B=100\ \text{мм}$ и длиной $l=300\ \text{мм}$. Припуск на обработку h = 3.5 мм. Материал заготовки – чугун серый с HB = 200. Обработка черновая, заготовка с литейной коркой.

НЕОБХОДИМО: 1. Выбрать режущий инструмент и назначить его геометрические параметры.

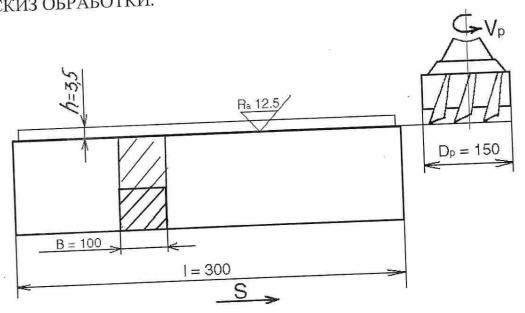
2. Назначить режимы обработки.

3. Определить основное время обработки.

ЦЕЛЬ ЗАНЯТИЯ: 1. Закрепить знания полученные на уроке по теме 4.8 «Расчет режимов резания при фрезеровании».

2. Получение студентами навыков пользования справочной технической литературой.

ОБЕСПЕЧЕНИЕ ЗАНЯТИЯ: 1. «Справочник молодого инструментальщика» С.П. Гладилин, 1973.


2. «Общемашиностроительные нормативы для технического нормирования работ на металлорежущих станках».

3. «Сборник задач и примеров по резанию металлов и режущему инструменту» Н.А. Нефедов, 1990.

4. «Справочник технолога машиностроителя» А.Г. Косилова, 1986.

ВЫПОЛНЕНИЕ ЗАДАНИЯ.

ЭСКИЗ ОБРАБОТКИ.

- Выбираем фрезу и назначаем ее геометрические параметры: I.
- 1. Принимаем фрезу торцевую со вставными ножами оснащенными пластинами ВК8. Диаметр фрезы D = 1.6, B = 1.6 * 100 = 160 мм.

Принимаем стандартную фрезу со вставными ножами D = 150 с z = 14 (2 к. 114).

2. Назначаем геометрические параметры фрезы:

Назначаем геометрические парамотры 41
$$\alpha = 12^{\circ}$$
, $\gamma = 5^{\circ}$, $\omega = 15^{\circ}$, $\varphi = 45-75^{\circ}$, $\varphi' = 3-5^{\circ}$.

- Назначаем режимы резания:
- 1. Устанавливаем глубину резания.

$$t = h = 3,5 \text{ MM}.$$

2. Назначаем подачу на зуб фрезы.

Назначаем подату на су тт
$$S_z = 0.5 \div 0.64$$
 (2 к. 108); $N_{\text{э.д.}} = 2$ кВт.

Принимаем $S_z = 0.6$ мм/зуб.

- 3. Назначаем период стойкости фрезы (4 табл. 40, стр.290), T = 240 мин.
- 4. Определяем скорость резания:

$$Vpes = \frac{Cv * D^{dv}}{T^m * t^{xv} * S^{dv} * B^{uv} * z^{pv}} * Kv$$

Выбираем из таблицы 39 (4 стр. 288) коэффициенты и показатели ступеней для Серого чугуна с HB = 190 и BK6, C = 445, $g_v = 0.2$, $X_v = 0.15$, $Y_v = 0.35$, $U_v = 0.2$, P_{v} = 0, m=0,32. Учитываем поправочный коэффициент на скорость резания: n_{v} = 1.25 (табл. 2, стр. 262). $K_n = 0.8$ (табл. 5, стр. 263); $K_H = 0.83$ (табл. 6, стр. 263).

1.25 (табл. 2, стр. 262). Кп = 0,6 (табл. 4,9 г.)
$$Vpes = \frac{445*160^{0.2}}{240^{0.32}*3.5^{0.15}*0.6^{0.35}*100^{0.2}}*0.962*0.8*0.83 = 65 \text{ м/мин.}$$

5. Определяем частоту вращения шпинделя:

Определяем частоту Бражин.

$$n = \frac{1000 * Vpe3}{\Pi * D\phi} = \frac{1000 * 65}{3,14 * 150} = 138 \text{ об/мин.}$$

- 6. Корректируем частоту по паспорту станка: $n_{\text{ст}} = 125$ об/мин (3 стр. 422).
- 7. Определяем действительную скорость резания:

Определяем деистипальную
$$V\partial = \frac{\Pi * D * n_{cm}}{1000} = \frac{3.14*150*125}{1000} = 58.8 \text{ м/мин.}$$

8. Определяем минутную подачу:

Определяем минутную подету:
$$S_M = S_Z * Z * n_A = 0.6 * 14 * 125 = 1050 \text{ мм/мин.}$$

- 9. Корректируем подачу по паспорту станка: $S_{\text{мст}} = 1000$ мм/мин.
- 10.Определяем главную составляющую силы резания: $Pz = \frac{9.81*Cp*t^{xp}*S^{yp}*B^{up}*z}{D^{up}*n^{op}}*Kp$

$$Pz = \frac{9.81 * Cp * t^{xp} * S^{yp} * B^{up} * z}{D^{qp} * n^{exp}} * Kp$$

Вписываем из (4 табл. 41, стр. 291) коэффициенты и показатели степеней для серого чугуна с HB = 190 и торцевых фрез с пластинами TC, C_p = 54,5, X_p = 0,9, $Y_p=0,74,\, N_p=1,\, \omega_p=0,\, q_p=1.$ Учитывая поправочный коэффициент K_M (4 табл.9).

табл.9).
$$K_{M} = (HB/190)^{n_{p}}; n_{p} = 1; K_{Mp} = (200/190) = 1,05;$$
$$P_{Z} = \frac{9.81 * 54.5 * 3.5^{0.9} * 0.6^{0.74} * 100 * 14}{150} = 6866.2 \text{ H} (\approx 686 \text{ KFC}).$$

11. Определяем мощность, затрачиваемую нба резание:

$$Npe3 = \frac{Pz * S_{mim}}{60 * 102} = 6.55 \text{ KBT}.$$

12. Проверяем достаточность мощности привода станка и возможность обработки по условию $N_{\text{шт}} \ge N_{\text{рез}}$.

по условию Nut 2 гурся.
$$N_{\text{unt}} = N_{\text{эл.д.}} * \eta = 11 * 0,8 = 8,8 \text{ кВт.}$$

Резание возможно, т.к. $N_{\text{int}} = 8,8 \text{ kB}_{\text{T}} > N_{\text{pe}_3} = 6,55 \text{ kB}_{\text{T}}.$

Определяем основное время обработки: III.

Определяем основное время от
$$T_0 = \frac{l + y + \Delta}{SM} = \frac{300 + 65}{1000} = 0,365$$
 мин.

 $y+\Delta = 65$ мм – врезание и перебег (3 стр.202).

3АДАНИЕ: На поперечно-строгальном станке модели 7305 произвести строгание плоской поверхности шириной В и длиной l, припуск на обработку h.

НЕОБХОДИМО: 1. Выбрать режущий инструмент и назначить его геометрические параметры.

2. Назначить режимы обработки.

3. Определить основное время обработки.

ЦЕЛЬ ЗАНЯТИЯ: 1. Практически закрепить знания, полученные при изучении темы 7.3.

2. Приобрести навык пользования справочной литературой.

ОБЕСПЕЧЕНИЕ ЗАНЯТИЯ: 1. «Справочник молодого инструментальщика» А.Н. Гладилин, 1973.

2. «Общемашиностроительные нормативы для технического нормирования работ на металлорежущих

3. «Сборник задач и примеров по резанию металлов и режущему инструменту».

ПРИМЕР ПОСЛЕДОВАТЕЛЬНОСТИ РАСЧЕТОВ И ВЫПОЛНЕНИЯ ЗАДАНИЯ.

На поперечно-строгальном станке модели 7305 производится строгание поверхности шириной B=90 мм на длине l=200 мм. Припуск на обработку h=2 мм. Шероховатость поверхности $R_a = 5$ ($\nabla 3$). Материал заготовки — Сталь 35 с $\sigma_B = 600$ МПа. Заготовка паковка, предварительно обработанная. Сечение резца 20х30 мм (по размерам резцодержателя). Система СПИД – жесткая.

НЕОБХОДИМО: 1. Выбрать режущий инструмент и назначить его геометрические параметры.

2. Назначить режимы обработки.

3. Определить основное время обработки.

РЕШЕНИЕ:

- Выбираем режущий инструмент и назначаем его геометрические параметры. Принимаем строгальный проходной резец с материалом режущей части из Р18 (или Р6М5). Геометрические параметры режущей части: ФПП – радиусная с фаской, f=0,2 мм, радиус стружкоотводящей лунки R=26 мм, ширина лунки $B = 7.5 \text{ mm}, \varphi = 45^{\circ}.$
- Назначаем режимы обработки. II.
- 1. Определяем глубину резания t = h = 2 MM.
- 2. Назначаем подачу $S_{2x} = 0,5 - 0,7$ мм/дв. ход. (2 карта 95).
- 3. Корректируем подачу по паспорту станка. $S_{2xct} = 0,6$ мм/дв. ход.

- 4. Определяем скороть резания: $V_{pes} = 21$ м/мин (2 карт. 96), (поперечный коээфициент не приводится).
- 5. Определяем число двойных ходов ползуна в минуту.

Определяем число двоинах
$$K = \frac{1000 * Vpe3}{L*(1+m)} = \frac{1000 * 21}{250*(1+0.799)} = 46.69 дв.ход./мин;$$

$$L = 1 + l_{nep} = 200 + 50 = 250$$
 MM;

$$L_{\text{пер}} = 50 \text{ мм } (2 \text{ прил. 4, стр. 379});$$

$$m = \frac{Vpx}{Vxx} = 0.799$$
 (3 cTp.423).

- 6. Корректируем число двойных ходов ползуна в минуту $K_{ct} = 53$ дв.ход./мин.
- 7. Определяем действительную скорость рабочего хода ползуна

Определяем деиствительную скорость распользования
$$V\partial = \frac{Kcm^*L^*(1+m)}{1000} = \frac{53*250*(1+0.799)}{1000} = 23.8 \text{ м/мин.}$$

- 8. Определяем главную составляющую силу резания P_z $P_z = P_z$ табл = 240 кгс $\approx 2,355$ кH (2 стр. 172 карта 97).
- 9. Проверяем возможность обработки на данном станке по условию $P_z \le P_{max}$ $P_z = 2,355$ кH; $P_{max} = 8,22$ кH; $P_z = 2,355 \le P_{max} = 8,22$.
- III. Определяем осмновное время обработки

$$T_0 = \frac{B + B_1 + B_2}{K_{cm} * S_{2,cm}} = \frac{90 + 2 * 2}{53 * 0.6} = 2.95 \text{ мин.}$$

$$B_1$$
 – боковое врезание; $B_1 = t * \text{ctg } \phi = 2 * \text{ctg } 45^\circ = 2 \text{ мм};$

$$B_1$$
 – боковое врезание, B_1 – совой сход; $B_2 = 2 \div 3$ мм, принимаем $B_2 = 2$ мм.

ВАРИАНТЫ ЗАДАНИЙ К ПРАКТИЧЕСКОМУ ЗАНЯТИЮ № 7.

		Заготовка	Обработка	Система	В,	L,	Н,
a	Материал заготовки	Jarorobia	шероховато	СПИД	MM	MM	MM
A H			сти Ra, мкм				
1				Жесткая	120	300	3,5
	Чугун серый НВ = 200	Отливка с	Черновая	жесткая			
		коркой	Ra = 50				
			(∇3)	Жесткая	100	500	1,5
	Ст. 45, $\sigma_B = 700 \text{ M}\Pi \text{a}$, (≈ 70	Прокат	Получистов	Mecikas	100		,
	кгс/мм ²).		ая Ra = 10				
			(∇4)	Жесткая	60	370	1,5
3.	CT. 40X, GB = 750 M∏a, (≈75	Поковка	Получистов	жесткая	00] , ,	1,-
*	KTC/MM ²).		ая Ra = 10				
	,		(∇4)	T T a nome	140	200	3
4.	Чугун серый НВ = 220	Отливка с		Нежестк.	140	200	
	2, 2,	коркой	Ra = 20				
			(∇3)	276	240	300	1,3
5.	C _T . 35, σ _B = 600 MΠa, (≈60	Прокат	Получистов	Жесткая	240	300	1,5
٥.	Krc/mm²).		ая Ra = 20		li de		
,			(∇4)		1.40	220	1,4
6.	CT. Y8A, OB = 800 M∏a, (≈80	Поковка	Получистов	Жесткая	140	220	1,7
υ.	KΓC/MM ²).	без корки	ая Ra = 20				
			(∇4)				

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ №

ЗАДАНИЕ: На токарно-винторезном станке 16К20 подрезается торец заготовки с диаметром D до диаметра d. Припуск на обработку h.

НЕОБХОДИМО: 1. Выбрать режущий инструмент и назначить его геометрические параметры.

- 2. Назначить режимы обработки.
- 3. Определить основное время обработки.

ЦЕЛЬ ЗАНЯТИЯ: 1. Практически закрепить знания, полученные при изучении темы 8.7.

2. Приобрести навык пользования справочной литературой.

ОБЕСПЕЧЕНИЕ ЗАНЯТИЯ: то же, что и п/з №3.

ПРИМЕР ПОСЛЕДОВАТЕЛЬНОСТИ РАСЧЕТОВ И ВЫПОЛНЕНИЯ ЗАДАНИЯ. Последовательность расчетов ведется такая же, что и в п/з №4. Данные о конструктивных и геометрических элементов выбираются в (1 стр. 22, 29, 36-38). Элементы расчетов резания определяются по (2 карты 1, 3, 6-17).

ВАРИАНТЫ К ПРАКТИЧЕСКОМУ ЗАНЯТИЮ №4.

Ва	Материал заготовки	Заготовка	Обработка, шероховатость по Ra в	Система СПИД	D, _{MM}	d, _{MM}	h, mm
ант 1.	Чугун серый	Отливка с коркой	Мкм Подрезка торца втулки черновая Ra=25	Жесткая	150	115	3.5
2.	HB=180 Ст. Р6М5, σв = 850 МПа,	Прокат	Подрезка торца заготовки Ra=6,3	Жесткая	130	27	17.:
3.	(≈85 кгс/мм²). Ст. 40X, ов = 700 МПа,	Отливка с коркой	Подрезка торца черновая Ra=25средняя	Средняя	80	0	3
4.	(≈70 кгс/мм²). Чугун серый	Отливка без корки	Подрезка уступа чиставая Ra=3,2	Средняя	160	100	4
5.	HB=210 Ст. 40XH, ов = 750 МПа,	Прокат	Подрезка сплошная чистоваяRa=3,2	Жесткая	150	0	1
6.	(≈75 KΓC/MM²). Ct. y8A, σB = 800 MΠa, (≈80 KΓC/MM²).	Прокат	Подрезка втулки получистовая Ra=12	Жесткая	120	27	1.5

MPCIKMUYECKAR PASOMO NZ

ЗАДАНИЕ: На токарно-винторезном станке 16Б16П произвести расточку отверстия с d до D. Длина отверстия 1. Заготовка крепится в патрон.

НЕОБХОДИМО: 1. Выбрать режущий инструмент и назначить его геометрические параметры.

2. Назначить режимы обработки.

3. Определить основное время обработки.

ЦЕЛЬ ЗАНЯТИЯ: 1. Практически закрепить знания, полученные при изучении темы 6.5.

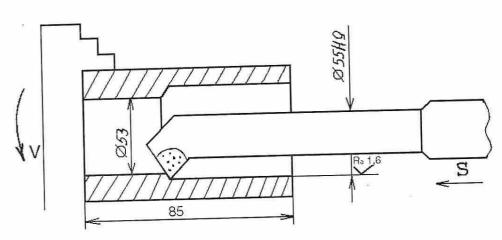
2. Приобрести навык пользования справочной литературой.

ОБЕСПЕЧЕНИЕ ЗАНЯТИЯ: 1. «Справочник молодого инструментальщика» А.Н. Гладинин, «Высшая школа», 1973.

2. «Общемашиностроительные нормативы для технического нормирования работ на металлорежущих станках», «Машиностроение», 1974.

3. «Сборник задач и примеров по резанию металлов и режущему инструменту» Н.А. Нефедов, К.А. Осипов, «Машиностроение», 1990.

ПРИМЕР ПОСЛЕДОВАТЕЛЬНОСТИ РАСЧЕТОВ И ВЫПОЛНЕНИЯ ЗАДАНИЯ.


На станке $16 \overline{b} 16 \Pi$ произвести растачивание сквозного отверстия с d=53 мм до D=55 H9 мм, на длину l=85 мм. Обработка в патроне, чистовая $R_a=1,6$ мкм ($\nabla 6$). Материал заготовки Сталь 35 с $\sigma_B=560$ МПа (≈ 56 кгс/мм²). Отверстие в заготовке предварительно обработано. Система СПИД жесткая.

НЕОБХОДИМО: 1. Выбрать режущий инструмент и назначить его геометрические параметры.

2. Назначить режимы обработки.

3. Определить основное время обработки.

ЭСКИЗ ОБРАБОТКИ.

PEILIEHME:

- Выбираем резец и назначаем его геометрические параметры.
- а) Принимаем: резец расточной для сквозных отверстий, материал режущий части Т30К4, размеры 25х25х200.
- б) Геометрические параметры γ = 15°, α = 12°, φ = 60°, φ 1 = 20°, λ = 0 (1, стр. 37-38).
- Назначаем параметры обработки.
- а) Определяем глубину резания.

$$t = \frac{D - d}{2} = \frac{55 - 53}{2} = 1.MM.$$

б) Назначаем подачу.

По карте 2 (2, стр. 3,4) при вылете резца 100 мм $S_0 = 0.15 \div 0.3$ мм/об.

- в) Принимаем S_{ст} = 0,25 мм/об, (3, стр. 422).
- г) Назначаем скорость резания

 $V_{\text{рез}} = V_{\text{табл}} * K_{\text{M}} * K_{\text{M}} * K_{\text{n}} = 218*1*1*1.4*1 = 305 \text{ м/мин.}$

 $V_{\text{табл}} = 218 \text{ м/мин (2 карта 6, лист 2);}$

 $K_M = 1$ (2 crp. 17);

K_и = 1,4 (2 карта 6, лист 2);

 $K_n = 1$ (2 карта 6, лист 2).

д) Определяем частоту вращения шнипеля

$$n = \frac{1000 * V \text{pe3}}{\Pi * D} = \frac{1000 * 305}{3,14 * 55} = 1766 \text{ об/мин.}$$

ж) Корректируем частоту вращения

ncт = 1600 об/мин (3 стр. 422).

з) Определяем действительную скорость резания

$$V\partial = \frac{II * D * n}{1000} = \frac{3.14 * 1600 * 55}{1000} = 276.5 \text{ м/мин.}$$

и) Произвести проверку возможности обработки по мощности по условию:

 $N_{IIIT} \ge N_{pe3}$.

 $N_{\text{шт}} = N_{\text{эл.д.}} * \eta = 6,3 * 0,7 = 4,4 \text{ кВт (3 стр. 422)};$

N_{рез} <2,9 кВт (2 карта 7, лист 1,2).

Резание возможно, т.к. 4,4 > 2,9.

Определяем основное время обработки. III.

Определяем основное время обре

$$T_0 = \frac{l+y+\Delta}{n_{cm}*S_{cm}} = \frac{85+2}{1600*0,25} = 0,22$$
 мин
 $y+\Delta = 2$ мм (2 стр. 197).

ВАРИАНТЫ ЗАДАНИЯ К ПРАКТИЧЕСКОМУ ЗАНЯТИЮ №

Вар иан т	Материал заготовки	Загото вка	Способ креплен	Вид обработки, шероховатость пов-ти после обр-ки по Ra в мкм	Система СПИД	D	d	1
1.	Ст. 40, σ в = 560 МПа, (\approx 56 кгс/мм ²).	Штам повка	В патроне	Растачивание сквозное, обработка черновая Ra=2,5	Средняя	100H15	98	60
2.	Чугун серый НВ 220	Отлив ка без корки	В патроне	Растачивание глухое, обработка получистовая Ra=12	Жесткая	40H12	37	50
3.	Ст. 5, $\sigma_B = 600 \text{ МПа},$ ($\approx 60 \text{ кгс/мм}^2$).	Предв арител ьная	В патроне	Растачивание сквозное, чистовая Ra=3,2	Жесткая	45H9	42	55
4.	Чугун ковкий НВ 180	Отлив ка без корки	В патроне	Растачивание глухое, обработка черновая Ra=50	Средняя	70H17	65	70
5.	Чугун серый НВ 210	Отлив ка без корки	В патроне	Растачивание сквозное, обработка чистовая Ra=3,2	Жесткая	50H8	47	50
6.	Ст. 40X, $\sigma_B = 750$ МПа, (≈ 75 кгс/мм ²).	Отвер стие сквозн ое	В патроне	Растачивание глухое, обработка черновая Ra=30	Жесткая	75H15	72	70