

МИНИСТЕРСТВО ВЫСШЕГО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (ДГТУ)

Колледж экономики, управления и права

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫПОЛНЕНИЮ ПРАКТИЧЕСКИХ РАБОТ

по дисциплине «Химия»

Специальность

09.02.07 Информационные системы и программирование

Ростов на Дону

2023 г.

Методические указания по выполнению практических работ по дисциплине «Химия». Методические рекомендации подготовлены с целью повышения эффективности профессионального образования и самообразования студентов.

Методические указания по учебной дисциплине «Химия» предназначены для студентов и преподавателей колледжа.

Составитель (автор): Н.В Река преподаватель колледжа ЭУП

Рассмотрены на	заседании	ЦК
Протокол №_7_ от «30»	062023 г	
Председатель П(Ц)К специ	альности	Е.В. Рудакова
и одобрены решением уче Протокол № 5 от « 4 »0		совета колледжа.

Рекомендованы к практическому применению в образовательном процессе.

Содержание

- 1. Пояснительная записка
- 2. Тематический план дисциплины.
- 3. Методические рекомендации по выполнению практических и лабораторных работ.
- 4. Работа с дополнительной литературой.

Пояснительная записка

Методические указания по выполнению практических работ по дисциплине «Химия», для студентов первого курса, технического профиля Колледжа экономики управления и права при ДГТУ, разработаны на основе «Рабочей программы» дисциплины «Химия» и в соответствии с требованиями к обязательному минимуму содержания и уровня подготовки государственного образовательного стандарта среднего профессионального образования.

Представленные методические указания разработаны с целью:

- закрепления полученных теоретических знаний по дисциплине;
- формирования умений применять полученные результаты на практике;
- выработки самостоятельности и творческой инициативы.
 - В результате освоения дисциплины студент должен овладеть следующими предметными компетенциями, включающими в себя способность:
 - ПК-1 овладение правилами безопасного обращения с веществами, приёмами оказания первой помощи при травмах и отравлениях;
 - ПК-2 систематизация основных законов химии и химических теорий в пределах основной образовательной программы среднего (полного) общего образования; овладение химической терминологией и символикой;
 - ПК-3 распознавание веществ и материалов на основании внешних признаков и важнейших характерных реакций; составление химических уравнений реакций и проведение по ним расчетов; способность пользоваться Периодической системой химических элементов Д.И. Менделеева;
 - ПК-4 понимание энергетических характеристик превращений веществ и их влияния на оптимальные условия протекания этих превращений;
 - ПК-5 способность применять полученные знания к объяснению химических явлений в окружающей жизни: в быту, в промышленном и сельскохозяйственном производстве, в живой природе;
 - ПК-6 осознание и разъяснение необходимости экологически грамотного поведения в окружающей среде; выявление и описание причин и последствий химического загрязнения окружающей среды, его влияния на живые организмы и здоровье человека;
 - ПК-7 становление мотивации к последующему изучению естественных дисциплин в учреждениях системы среднего и высшего профессионального образования и для самообразования; характеристика профессий, основой которых являются естественные науки;

ПК-8 осознание и объяснение значения химии в современном обществе, её роли в изучении природы, её взаимосвязях с другими естественными науками; ПК-9 овладение основами химической термодинамики и химической кинетики;

При подготовке к практической работе необходимо изучить на основании лекций или учебника материал по предлагаемой теме, повторить определения, термины.

Методические рекомендации по выполнению практических работ по химии.

Раздел «Неорганическая химия»

Тема 1. Основные понятия и законы

Практическая работа № 1.

Цель: Овладение навыками решения химических задач. Закрепить знания по теме «Основные понятия и законы химии»

Типовые примеры решения задач по теме.

Пример 1. Вычислите относительную молекулярную массу серной кислоты, химическая формула которой H₂SO₄.

Решение. Для вычисления относительной молекулярной массы необходимо суммировать относительные атомные массы элементов (их взять из периодической таблицы Д.И.Менделеева), образующих соединение с учетом числа атомов:

$$M_r (H_2SO_4) = 1 \times 2 + 32 + 16 \times 4 = 98$$

Пример 2. Вычислите массовую долю кислорода в SO₃.

Решение. Массовая доля элемента в веществе (w) показывает, какую часть относительной молекулярной массы вещества составляет относительная атомная масса элемента, умноженная на индекс (n) при знаке элемента в формуле. Массовая доля — величина безразмерная. Выражается в долях от единицы или в процентах.

1. Вычисляем относительную молекулярную массу SO3:

$$M_r (SO_3) = 32+16\times3=80$$

2. Вычисляем массовую долю кислорода.

Относительная атомная масса кислорода из периодической таблицы Д.И.Менделеева $A_r(O) = 16$

Составим пропорцию: $w(O) = A_r(O) / M_r (SO_3) X100\% = 60\%$

Ответ: w(O) = 60%

Пример 3. Какое количество вещества оксида меди (II) содержится в 160 г его массы?

Решение. Используем формулу, n= м/M

где п- количество вещества;

т- масса вещества;

М – молярная масса вещества, численно равна

относительной молекулярной массе

- 1. Относительная молекулярная масса $M_r(CuO)=64+16=80$, следовательно, молярная масса $M_r(CuO)=80r/моль$.
- 2. Пользуясь соотношением

находим количество вещества: n(CuO) = 160/80 = 2 моль,

Ответ: n(CuO) = 2 моль

Пример 4. Определите массу гидроксида натрия количеством вещества 2 моль.

Решение. Используем формулу,

- 1. Молярная масса M (NaOH) = 23+16+1=40г/моль.
- 2. m = n xM
- 3. m (NaOH) = 2 моль X 40 г/моль=80 г.

Ответ: $m (NaOH) = 80 \Gamma$

Пример 5. Какой объем занимает 4 моль углекислого газа СО2.

Решение. Используем формулу, V= n x Vм

где Vm = 22,4 л/моль

1.
$$V(CO_2) = n(CO_2) Vm = 4$$
 моль х 22,4 л/моль = 89,6 л.

Ответ: $V(CO_2) = 89.6 \text{ л}.$

Пример 6. Задача на нахождение неизвестного вещества по известной массе вещества вступившего в реакцию.

Вычислите массу поваренной соли (NaCl), которая образуется при взаимодействии 80 г. гидроксида натрия (NaOH) с соляной кислотой (HCl).

1.Способ.

Составляем пропорцию

Из 80г (NaOH) выделяется $m \ge$ (NaCl)

Из 40г (NaOH) выделяется 58,5 г (NaCl)

$$m = \frac{80\varepsilon x 58,5\varepsilon}{40\varepsilon} = 117\varepsilon$$

2.Способ.

а) Находим v или n (NaOH), находящейся в 80г (NaOH), по

формуле
$$_{\mathcal{U}} = \frac{m}{M}$$
; $_{\mathcal{U}} = \frac{80\varepsilon}{40\varepsilon / \textit{моль}} = 2 \textit{моль}$

б) Находим m (NaCl); m (NaCl)= ν (NaOH) χ M (NaCl)=2 моль χ 58,5 г/моль=117 г. Ответ: из 80г NaOH выделяется 117 г NaCl.

Пример 7. Задача на нахождение неизвестного вещества по известному объёму вещества вступившего в реакцию.

Вычислите объем воды, который выделится при сгорании 100 л водорода.

Дано:
$$V(H_2) = 100\pi$$

 $V(H_2O) = ?$ Решение:

1 способ, по пропорции: так можно решать задачи только для газообразных веществ. Согласно газовому закону, объемны газов вступивших в реакцию, так и получившихся после реакции — определяются коэффициентом перед формулой, то есть количеством вещества.

Составляем пропорцию: Из 100π (H₂) выделяется $V(H_2O)$

Из
$$2\pi$$
 (H₂) выделяется 2π (H₂O)

 $\underset{2\pi}{2}H_{2}+O_{2}=\underset{2\pi}{2}H_{2}O$

$$V = \frac{100\pi x 2\pi}{2\pi} = 100\pi$$

Ответ: из 100л водорода при окислении выделяется 100 л воды.

2 способ, по формуле $n = V / V_M$, где $V_m = 22,4$ л/моль

- 1. $n(H_2) = V / V_M$, $n(H_2) = 100$ л /22,4 л/моль = 4.5 моль
- 2. V (H₂O)= n x V_M = 4.5 моль x 22,4 л/моль = 100 л.

Пример 8. Посчитайте, сколько молекул (N) в стакане воды? Напоминаю, что n и v- это одно и тоже - количество вещества.

Дано:
$$m (H_2O) = 250 \ \Gamma$$

Находим
$$v = \frac{m}{M} = \frac{250 e}{18 e / Moлb} = 14 Moлb$$

По формуле $_{\mathcal{U}} = \frac{N}{N_a};$ где N_a - число постоянное и равно $6{,}02x10^{-23}$, отсюда

N= N_a х υ =6,02х10⁻²³ х 14 моль=124,28 х 10⁻²³ молекул.

Ответ: в стакане воды 124,28 x 10⁻²³ молекул.

Задания для выполнения практической работы № 1

Вариант 1

- **Задание 1.** Вычислите относительные молекулярные и молярные массы- фосфорной кислоты- H_3PO_4 , глюкозы- $C_6H_{12}O_6$, карбоната кальция $CaCO_3$, гидроксида кальция- $Ca(OH)_2$, метана- CH_4 , водорода- H_2 , нитрата магния — $Mg(NO)_3$, гексохлорана — $C_6H_6Cl_6$
- Задание 2. Вычислите массовую долю кислорода в веществах из 1 задания.
- **Задание 3.** Какое количество вещества оксида железа (II) содержится в 144 г и 576 г его массы?
- **Задание 4.** Определите массу гидроксида кальция количеством вещества 5 моль, 10 моль, 1.5 моль, 0,5 моль.
- Задание 5. Какой объем занимает 4 моль, 3 моль, 10 моль, 1.5 моль угарного газа- СО.
- А) Юный радиотехник при травлении омедненной платы опустил ее в раствор хлорида железа (III). Какая масса меди перейдет в раствор, если в результате реакции, идущей согласно уравнению $2\text{FeCl}_3 + \text{Cu} = 2\text{FeCl}_2 + \text{CuCl}_2$, выделилось 1,35г хлорида меди(II).
- Б) Какое количество вещества (n) воды можно получить, если сжечь 3 моль газа водорода.
- **Задание 6.** Сколько молекул в 100 л. углекислого газа, 50 л. водорода, 0.5 л. аммиака-(NH₃), 73 г. соляной кислоты (HCI), 72 г. магния.

Вариант 2

- **Задание 1.** Вычислите относительные молекулярные и молярные массы- уксусной кислоты- $H_4C_2O_4$, сахарозы- $C_{12}H_{22}O_{11}$, карбоната натрия Na_2CO_3 , гидроксида меди (II) $Cu(OH)_2$, этана- C_2H_6 , азота- N_2 , нитрата кальция — $Ca(NO)_3$, нитробензола — $C_6H_5NO_2$
- Задание 2. Вычислите массовую долю водорода в веществах из 1 задания.
- **Задание 3.** Какое количество вещества оксида железа (III) содержится в 320 г и 960 г его массы?
- **Задание 4.** Определите массу гидроксида калия количеством вещества 5 моль, 10 моль, 1.5 моль, 0,5 моль.
- **Задание 5.** Какой объем занимает 4 моль, 3 моль, 10 моль, 1.5 моль сернистого газа- SO₃.
- А) Сколько литров водорода (н.у.) сгорело, если образовалось 72 г воды?
- Б) Какой объем кислорода (н.у.) израсходуется на сжигание 100 л природного газа метана CH₄?
- **Задание 6.** Сколько молекул в 1000 л. углекислого газа, 1,5 л. водорода, 25 л. аммиака-(NH₃), 146 г. соляной кислоты (HCI), 48 г. магния. Оформите в виде решения задачи.

Тема: Периодический закон и Периодическая система химических элементов Д.И. Менделеева.

Практическая работа 2 «Изучение Периодической таблицы химических элементов Д.И. Менделеева. Строение атома».

Цель: закрепить теоретические знания о Периодической системе химических элементов Д.И. Менделеева, сформировать практические умения и навыки:

Оборудование: Периодическая система химических элементов Д.И. Менделеева.

Вариант 1: Ответьте письменно на вопросы:

- 1. Сколько групп в Периодической системе химических элементов Д.И. Менлелеева?
- 2. Рассмотрите I и V группы Периодической системы химических элементов Д.И. Менделеева. Расположите элементы сначала I группы в столбик, по увеличению атомной массы и охарактеризуйте строение атомов этих элементов по плану:
- Заряд ядра
- Количество e, P, п
- Количество энергетических уровней
- Количество е на энергетических уровнях
- Электронную формулу атома
- Электронно графическую формулу атома
- Формулу высшего оксида и гидроксида
- Сделайте вывод, о том у какого элемента сильнее выражены МЕ свойства у Na или K, почему?
- Сделайте вывод о том, как изменяется химическая активность элементов данной группы (сверху вниз) на основании заряда ядра и радиуса атома.

По такому же плану охарактеризуйте V группу. Сравните свойства фосфора и мышьяка, у какого элемента сильнее выражены HEME свойства. Почему?

- 3. Сколько периодов в Периодической системе химических элементов Д.И. Менделеева? Какие?
- 4. Рассмотрите III период Периодической системы химических элементов Д.И. Менделеева. Расположите элементы III период в строчку, по увеличению атомной массы и охарактеризуйте строение атомов этих элементов по плану:
- Заряд ядра
- Количество e, P, п
- Количество энергетических уровней
- Количество е на энергетических уровнях
- Электронную формулу атома
- Электронно графическую формулу атома
- Формулу высшего оксида и гидроксида

- Сделайте вывод, о том у какого элемента сильнее выражены ME свойства у магния или алюминия, сильнее выражены HEME свойства у серы или хлора почему?
- Сделайте вывод о том, как изменяется химическая активность элементов данного периода (слева направо) на основании заряда ядра и радиуса атома.
- Сформулируйте Периодический закон Д.И. Менделеева.

Вариант 2. Ответьте письменно на вопросы:

- 1. Сколько групп в Периодической системе химических элементов Д.И. Менделеева?
- 2. Рассмотрите II и VI группы Периодической системы химических элементов Д.И. Менделеева. Расположите элементы сначала II группы в столбик, и охарактеризуйте строение атомов этих элементов по плану:
- Заряд ядра
- Кол-во е, P, п
- Кол-во энергетических уровней
- Кол-во е на энергетических уровнях
- Электронную формулу атома
- Электронно графическую формулу атома
- Формулу высшего оксида и гидроксида
- Сделайте вывод, о том у какого элемента сильнее выражены ME свойства у магния или стронция, почему?
- Сделайте вывод о том, как изменяется химическая активность элементов данной группы (сверху вниз) на основании заряда ядра и радиуса атома.

По такому же плану охарактеризуйте VI группу. Сравните свойства серы и селена, у какого элемента сильнее выражены HEME свойства. Почему?

- 3. Сколько периодов в Периодической системе химических элементов Д.И. Менделеева? Какие?
- 4. Рассмотрите II период Периодической системы химических элементов Д.И. Менделеева. Расположите элементы II период в строчку, и охарактеризуйте строение атомов этих элементов по плану:
 - Заряд ядра
 - Кол-во e, **P**, n
 - Кол-во энергетических уровней
 - Кол-во е на энергетических уровнях
 - Электронную формулу атома
 - Электронно графическую формулу атома
 - Формулу высшего оксида и гидроксида
 - Сделайте вывод, о том у какого элемента сильнее выражены ME свойства у лития или бериллия, сильнее выражены HEME свойства у кислорода или фтора почему?

- Сделайте вывод о том, как изменяется химическая активность элементов данного периода (слева направо) на основании заряда ядра и радиуса атома.
- Сформулируйте Периодический закон Д.И. Менделеева.

Практическая работа № 3

Раздел 1. Общая и неорганическая химия.

Глава 3. Строение вещества.

Название практической работы: Типы химической связи.

Учебная цель: Овладение навыками решения химических задач.

Вопросы для закрепления теоретического материала к практическому занятию:

- 1. Электронные конфигурации атомов.
- 2.Правило Гунда.
- 3. Принцип Паули.
- 4. Правила Клечковского

Задания для практической работы:

- №1 В веществах, образованных путем соединения одинаковых атомов, химическая связь:
 - 1. ионная
 - 2. ковалентная полярная
 - 3. водородная
 - 4. ковалентная неполярная

№2 Кристаллическая решетка графита:

- 1. атомная
- 2. ионная
- 3. молекулярная
- 4. металлическая
- №3 Установите соответствие между названием вещества и типом его кристаллической решетки:

НАЗВАНИЕ ВЕЩЕСТВА ТИП КРИСТАЛЛИЧЕСКОЙ РЕШЕТКИ

- Бром (В)
 Графит (Б)
 Цезий (Г)
 Молекулярная
- 4) нитрид алюминия (А) Г) металлическая

№4 Между атомами элементов с порядковыми номерами 11 и 17 возникает связь:

- 1. металлическая
- 2. ионная
- 3. ковалентная
- 4. донорно-акцепторная
- №5 Установите соответствие между названием химического соединения и видом связи атомов в этом соединении:

НАЗВАНИЕ СОЕДИНЕНИЯ

ВИД СВЯЗИ

1) Цинк (Б)

А) ионная

A3οτ (Γ)

Б) металлическая

3) Аммиак (В)

В) ковалентная полярная

4) хлорид кальция (А)

Г) ковалентная неполярная

№6 Вещества, обладающие твердостью, тугоплавкостью, хорошей растворимостью в воде, как правило, имеют кристаллическую решётку:

- 1. молекулярную
- 2. атомную
- 3. ионную
- 4. металлическую

№7 Какие из утверждений являются верными?

- А. Вещества с молекулярной решеткой имеют низкие температуры плавления и низкую электропроводность.
- Б. Вещества с атомной решеткой пластичны и обладают высокой электрической проводимостью.
 - 1. верно только А
 - 2. верно только Б
 - 3. верны оба утверждения
 - 4. оба утверждения неверны

№8 Заполните таблицу «Типы кристаллических решеток и их характеристики»:

Характеристики	Тип решетки			
	Атомная	Ионная	Молекулярная	Металлическая
Вид частиц				
в узлах решетки				
Химическая связь				
Примеры				
веществ				

По окончанию практической работы студент должен представить: Выполненную в рабочей тетради практическую работу в соответствии с вышеуказанными требованиями. **Список литературы:**

Габриелян О.С., Остроумов И.Г. Химия для профессий и специальностей технического профиля, учебник для студ. учреждений сред.проф. образования. — М., 2014.

Габриелян О.С., Остроумов И.Г., Сладкое С.А., Дорофеева Н.М. Практикум, учеб.пособие для студ. учреждений сред. проф. образования. — М., 2014.

Практическая работа № 4

Раздел 1. Общая и неорганическая химия.

Глава 3. Строение вещества. Дисперсные системы.

Вопросы для закрепления теоретического материала к практическому занятию:

- 1. Дайте определение понятия «электроотрицательность».
- 2. От чего зависит электроотрицательность атома?
- 3. Как изменяется электроотрицательность атомов элементов в периодах?
- 4. Как изменяется электроотрицательность атомов элементов в главных подгруппах?
- 5. Сравните электроотрицательность атомов металлов и неметаллов. Отличаются ли способы завершения внешнего электронного слоя, характерные для атомов металлов и неметаллов? Каковы причины этого?
- 6. Каким образом на последнем энергетическом уровне атома может образоваться октет?

Задания для практической работы:

1 вариант

Задание №1.Степень дисперсности - это:

- а. диаметр частиц дисперсной фазы;
- b. величина, обратная поперечному размеру частиц дисперсной фазы;
- с. суммарная площадь поверхности частиц дисперсной фазы;
- d. общая масса частиц дисперсной фазы.

Задание №2. Термодинамически устойчивыми являются следующие дисперсные системы:

- а. коллоидно-дисперсные системы;
- b. грубодисперсные системы;
- с. молекулярно-дисперсные системы;
- d. ионно-дисперсные.

Задание №3. Способны существовать только в присутствии стабилизаторов следующие дисперсные системы:

- а. молекулярно-дисперсные системы;
- b. ионно-дисперсные;
- с. гидрофобные коллоидно-дисперсные системы;
- d. истинные растворы.

Задание №4. Способны беспрепятственно проходить через все виды фильтров:

- а. истинные растворы;
- b. высокодисперсные системы;
- с. ультрамикрогеторогенные системы;
- d. микрогетерогенные системы

Задание №5. Коллоидно-дисперсная система, в которой капельки жидкости равномерно распределяются в твёрдом веществе, называется:

- а. твёрдым золем;
- b. лиозолем;
- с. эмульсией;
- d. гидрозолем.

Задание №6. Дисперсные системы, в которых вещество дисперсной фазы находится в твердом агрегатном состоянии, а дисперсионная среда является газом, называются:

- а. аэрозолями;
- b. взвесями;
- с. суспензиями;
- d. дымами или пылью.

Задание №7. Дисперсные системы, в которых вещество дисперсной фазы находится в газообразном агрегатном состоянии, а дисперсионная среда – в твердом, называются:

- а. эмульсиями;
- b. твердыми пенами;

- с. студнями;
- d. взвесями.

Задание №8. Какое агрегатное состояние дисперсной фазы в эмульсиях?

- а. жидкое;
- b. твёрдое;
- с. газообразное;
- d. возможно любое.

Задание №9. Какое агрегатное состояние дисперсионной среды в суспензиях?

- а. жидкое;
- b. твёрдое;
- с. газообразное;
- d. возможно любое.

2 вариант

Задание №1.Системы, в которых вещество дисперсной фазы находится в виде отдельных молекул, называются:

- а. истинными растворами;
- b. молекулярно-дисперсными системами;
- с. коллоидно-дисперсными системами;
- d. грубодисперсными системами.

Задание №2.Колллоидные системы:

- а. являются гомогенными;
- b. способны к опалесценции;
- с. обладают наибольшей удельной поверхностью среди дисперсных систем;
- d. являются агрегативно-неустойчивыми.

Задание №3.В качестве стабилизаторов при получении гидрофобных коллоидных растворов используют:

- а. электролиты;
- b. биополимеры;
- с. органические низкомолекулярные неэлектролиты;
- d. избыток растворителя.

Задание №4. Коллоидно-дисперсная система, в которой жидкие частички дисперсной фазы равномерно распределяются в газообразном азоте, называется:

- а. лиозолем;
- b. туманом;
- с. дымом;
- d. аэрозолем.

Задание №5. Дисперсные системы, в которых вещества дисперсной фазы и дисперсионной реды находятся в жидком агрегатном состоянии, называются:

- а. аэрозолями;
- b. суспензиями;
- с. эмульсиями;
- d. пенами.

Задание №6.Дисперсные системы, в которых вещество дисперсной фазы находится в газообразном агрегатном состоянии, а дисперсионная среда является жидкостью, называются:

- а. аэрозолями;
- b. пенами;
- с. туманом;
- d. эмульсиями.

Задание №7. Какое агрегатное состояние дисперсной фазы в суспензиях?

- а. жидкое;
- b. твёрдое;
- с. газообразное;
- d. возможно любое.

Задание №8. Какое агрегатное состояние дисперсионной среды в эмульсиях?

- а. жидкое;
- b. твёрдое;
- с. газообразное;
- d. возможно любое.

Задание №9. Какое агрегатное состояние дисперсионной среды в тумане?

- а. жидкое;
- b. твёрдое;
- с. газообразное;
- d. возможно любое.

Список литературы:

Габриелян О.С., Остроумов И.Г. Химия для профессий и специальностей технического профиля, учебник для студ. учреждений сред.проф. образования. — М., 2019.

Габриелян О.С., Остроумов И.Г., Сладкое С.А., Дорофеева Н.М. Практикум, учеб.пособие для студ. учреждений сред. проф. образования. — М., 21

Дисциплина «Химия»

Практическая работа № 5

Раздел 1. Общая и неорганическая химия.

Глава 4.Вода. Растворы. Электролитическая диссоциация.

Название практической работы: Жесткость воды.

Учебная цель: Овладение навыками решения химических задач.

Вопросы для закрепления теоретического материала к практическому занятию:

- 1. Дать определение электролитам и неэлектролитам, привести примеры.
- 2. Что является причиной электрической проводимости растворов и расплавов веществ?
- 3. Каков механизм диссоциации кислот, солей, оснований?

Задания для практической работы:

Задание№1. Составьте возможные уравнения электролитической диссоциации веществ в водных растворах. Основываясь на составленных схемах, дайте определение кислотам с точки зрения ТЭД.

- 1. HCI
- 2. HNO₃
- 3. H₂SiO₃

Задание№2. Составьте возможные уравнения электролитической диссоциации веществ в водных растворах. Основываясь на составленных схемах, дайте определение основаниям с точки зрения ТЭД

- 1. NaOH
- 2. KOH
- 3. Fe(OH)₂

Задание№3. Составьте возможные уравнения электролитической диссоциации веществ в водных растворах. Основываясь на составленных схемах, дайте определение солям с точки зрения ТЭД.

- 1. NaCI
- 2. KNO₃
- 3. BaSO₄

Задание№ 4. Напишите уравнения электролитической диссоциации азотной и азотистой кислот. В чём различие процессов электролитической диссоциации сильных и слабых электролитов? В каком уравнении необходимо поставить знак равенства, а в каком — знак обратимости?

Задание № 5. Допишите уравнения реакций в молекулярном виде. Составьте ионные уравнения этих реакций.

```
1.MgCl_2 + NaOH \dots;
```

- 2. $K_2CO_3 + HNO_3 \dots$;
- 3. $Ba(OH)_2 + HC1 \dots$

Список литературы:

Габриелян О.С., Остроумов И.Г. Химия для профессий и специальностей технического профиля, учебник для студ. учреждений сред.проф. образования. — М., 2014.

Габриелян О.С., Остроумов И.Г., Сладкое С.А., Дорофеева Н.М. Практикум, учеб.пособие для студ. учреждений сред. проф. образования.

Раздел «Неорганическая химия» Тема: «Вода. Растворы»

Практическая работа № 6 «Растворы. Приготовление растворов с определенной концентрацией».

Цель: закрепить теоретические знания о концентрации вещества, сформировать практические умения и навыки в приготовлении растворов определенной концентрации.

Оборудование: поваренная соль, вода, весы, мерный цилиндр.

І вариант

Задание 1: Приготовить 200 г - 10% раствора поваренной соли - физиологический раствор (применяется в медицине для капельниц). Рассчитать массу растворенного вещества, массу растворителя. Ответ оформить в виде задачи.

Задание 2: Для засолки огурцов на 1 литр воды требуется 65г поваренной соли и 30г уксуса. Рассчитайте массовую долю растворенных веществ. Ответ оформить в виде задачи Задание 3: Определить среду растворов солей индикаторной бумагой — лакмусом. Составить уравнения гидролиза (сокращённое и молекулярное ионное уравнение гидролиза) для растворов следующих солей: Na₂SO₃; ZnCI₂; NaCI. Сделать соответствующие выводы.

Решение: При опускании лакмуса в пробирку с соответствующим раствором соли, лакмус меняет цвет:

Na₂SO₃ - лакмус становится синим

 $ZnCI_2$ - лакмус становится красным.

В NaCI - лакмус не изменяется.

Напишите уравнение соответствующих реакций.

Оформить результаты в виде таблицы.

№ опыта	Реактивы	Наблюдения	Вывод и уравнения реакций
1.			
2.			
3.			

II вариант

Задание 1: Приготовить 150 г - 10% раствора поваренной соли - физиологический раствор (применяется в медицине для капельниц). Рассчитать массу растворенного вещества, массу растворителя. Ответ оформить в виде задачи.

Задание 2: Для засолки помидоров на 500 г воды требуется 30г поваренной соли и 15г уксуса. Рассчитайте массовую долю растворенных веществ. Ответ оформить в виде задачи.

Задание 3: Определить среду растворов солей индикаторной бумагой — лакмусом. Составить уравнения гидролиза (сокращённое и молекулярное ионное уравнение гидролиза) для растворов следующих солей: **Na₂CO₃; ZnSO₄; Na₂SO₄.** Сделать соответствующие выводы.

Решение: При опускании лакмуса в пробирку с соответствующим раствором соли, лакмус меняет цвет:

В Na₂CO₃ - лакмус становится синим,

В ZnSO₄- лакмус становится красным.

Na₂SO₄. – не изменяется

Оформить результаты в виде таблицы.

№	Реактивы	Наблюдения	Вывод и уравнения реакций
опыта			
1.			
2.			
3.			

Дисциплина «Химия» Раздел «Неорганическая химия» Тема: «Свойства неорганических соединений».

Практическая работа № 7 «Оксиды»

Учебная цель: Овладение навыками решения химических задач.

Учебные задачи: Закрепить знания по теме «Классификация неорганических соединений и их свойства».

Вопросы для закрепления теоретического материала к практическому занятию:

- 1. Физические свойства простого вещества кислорода.
- 2. Химические свойства простого вещества кислорода.
- 3. Как даются названия оксидам.
- 4. Почему в некоторых реакциях применяют катализатор?
- 5.В чем различие протекания реакций в кислороде и на воздухе?

6. Что необходимо для возникновения и прекращения горения?

Задания практической работы:

1 вариант

Даны кислородсодержащие бинарные соединения:

1.Li2O, 2. Al2O3, 3.CaO, 4.BaO2, 5.KO3, 6.SO3, 7.FeO, 8.Cr2O3, 9. MnO2,10.Mn2O7, 11. MnO, 12. CO, 13. N2O, 14. N2O5, 15. Pb3O4, 16.NO2, 17. CoO, 18.ZnO, 19. P2O5, 20. Cl2O

- 1. Рассчитайте степени окисления элементов, связанных с кислородом. Какие из бинарных соединений не являются оксидами?
- 2. Укажите характер оксида (основный, кислотный, амфотерный). Запишите рядом с формулой оксида формулу соответствующего ему гидроксида (основания, кислоты или амфотерного гидроксида). Какие из перечисленных оксидов не являются кислотообразующими?
- 3. Как изменяется характер свойств оксидов d-металлов в зависимости от степени окисления металла? Поясните на примере соединений 9,10,11.
- 4. Вещества 3,18,19 порошки белого цвета. Как различить эти вещества при помощи химических реакций?
- 5. К какому классу соединений относится продукт реакции сплавления 2 и 17 тенарова синь? Напишите уравнение реакции.
- 6. Как взаимодействуют с раствором едкого кали 14 и 16. В чем различие этих реакций?
- 7. Как взаимодействует 15 с раствором соляной кислоты?
- 8. Запишите не менее пяти реакций попарного взаимодействия оксидов из предложенного списка.

2 вариант

- 1. Какие соединения называют оксидами? Дайте несколько вариантов определения оксидов.
- 2. Какие из перечисленных соединений оксиды: CO2, BaO2, N2O3, CrO3, SO3, N2O4, KO3, Cl2O, H2O2?
- 3. Назовите оксиды, используя метод Штока и метод численных приставок, зная, что в оксидах электроотрицательной составляющей является кислород: P2O5, SO2, ZnO, Cr2O3, MoO3, Re2O7, N2O.
- 4. Можно ли по положению элемента в периодической таблице предсказать химическую природу его оксидов? Как именно?

- 5. Как изменяются кислотно-основные свойства оксидов переходных металлов в зависимости от степени окисления металла?
- 6. Перечислите основные способы получения оксидов. Приведите примеры, укажите условия осуществления реакций.
- 7. Допишите схемы реакций:

$$N2O5 + H2O = Li2O + SiO2 = Fe2O3 + HClO4 =$$

$$Cl2O + H2O = Mn2O7 + BaO = Al2O3 + NaOH =$$

$$CrO3 + H2O = ZnO + Na2O = Li2O + H2O =$$

$$Fe3O4 + H2SO4 = NO2 + H2O = C12O + Ca(OH)2 =$$

Пример выполнения и оформления. Образец вывода:

- 1. В тетради для выполнения практических работ напишите тему практической работы
- 2. Далее должно быть заглавие «Задание №1» и решение задания по составлению возможных уравнений или ответов на вопросы
- 3. Затем заглавие «Задание №2» и решение задания по составлению возможных уравненийили ответов на вопросы ...
- 4. Ит.л.

По окончанию практической работы студент должен представить:- Выполненную в рабочей тетради практическую работу в соответствии с вышеуказанными требованиями.

Список литературы:

Габриелян О.С., Остроумов И.Г. Химия для профессий и специальностей технического профиля, учебник для студ. учреждений сред.проф. образования. — М., 2021.

Габриелян О.С., Остроумов И.Г., Сладкое С.А., Дорофеева Н.М. Практикум, учеб.пособие для студ. учреждений сред. проф. об

Дисциплина «Химия»
Раздел «Неорганическая химия»
Тема: «Свойства неорганических соединений».

Практическая работа № 8 «Изучение химических свойств кислот и оснований».

Цель: Закрепить знания учащихся по свойствам неорганических кислот, закрепить практические умения и навыки учащихся при решении экспериментальных задач. **Оборудование:** растворы солей, оснований, кислот, металлы, оксиды, пробирки,

Вариант 1:

К раствору соляной кислоты (НСІ) добавить:

- а) **индикатор лакмус** (бумажные полоски желтого цвета). Лакмус окрасится в красный цвет. Составить уравнение диссоциации данной кислотs.
- б) **металл цинк (Zn)-** серебристого цвета, при этом выделяются пузырьки газа водорода (H_2) Составить уравнение реакции.
- в) оксид кальция (СаО)-порошок белого цвета, при этом происходит растворение оксида кальция, раствор становится бесцветным. Составить уравнение реакции.
- г) **гидроксид меди (II),** порошок черного цвета. При этом образуется раствор голубого цвета. Составить уравнение реакции.
- д) **нитрата серебра (AgNO₃)** раствор бесцветный. При этом образуется осадок белого, молочного цвета. Составить уравнение реакции.
- е) **карбоната натрия (Na₂CO₃)** бесцветный раствор. При этом выделяются пузырьки газа (CO₂) Составить уравнение реакции.

Задание:

Пронаблюдайте, сделайте выводы.

Составьте уравнения реакций, в молекулярном, ионном и сокращенном ионном виде. Результаты оформите в виде таблицы.

№	Реактивы	Наблюдения	Вывод и уравнения реакций
опыта			
1.			
2.			
3.			

Вариант 2:

К раствору серной кислоты (H2SO4) добавить:

- а) **индикатор лакмус** (бумажные полоски желтого цвета). Лакмус окрасится в красный цвет. Составить уравнение диссоциации данной кислоты.
- б) **металл цинк (Zn)-** серебристого цвета, при этом выделяются пузырьки газа водорода (H_2) Составить уравнение реакции.
- в) оксид кальция (СаО)-порошок белого цвета, при этом происходит растворение оксида кальция, раствор становится бесцветным. Составить уравнение реакции.
- г)**гидроксид меди (II),** порошок черного цвета. При этом образуется раствор голубого цвета. Составить уравнение реакции.
- д) **хлорида бария (BaCI₂)** раствор бесцветный. При этом образуется белый, творожистый осадок. Составить уравнение реакции.
- е)**карбоната натрия (Na₂CO₃)** бесцветный раствор. При этом выделяются пузырьки газа (CO₂) Составить уравнение реакции.

Задание:

Пронаблюдайте, сделайте выводы.

Составьте уравнения реакций, в молекулярном, ионном и сокращенном ионном виде. Результаты оформите в виде таблицы.

No	Реактивы	Наблюдения	Вывод и уравнения реакций
опыта			
1.			
2.			
3.			

Изучение химических свойств оснований.

Вариант 1:

Оборудование: растворы солей, оснований, кислот, пробирки,

Залание 2

Составьте формулы оснований: гидроксидов натрия, кальция, магния, меди (II), алюминия, железа (III). Выбрать из списка щелочи и нерастворимые основания.

Задание 3

К раствору щелочи - гидроксида натрия (NaOH) – бесцветный раствор, добавить:

- а) **индикатор лакмус** (бумажные полоски желтого цвета). Лакмус окрасится в синий цвет. Составить уравнение диссоциации данной щелочи. NaOH↔Na⁺+OH⁻
- б) добавить полоску лакмуса и прилить раствор соляной кислоты (HCI)— бесцветный раствор, при этом видимых проявлений с растворами не происходит. Лакмус меняет цвет, из синего становится красным, а затем нейтральным(желтым). Как называется данная реакция? Составить уравнение реакции.
- в) раствор **хлорида меди (II) (CuCI₂), -** голубого цвета. При этом образуется осадок синего цвета . Составить уравнение реакции, определите осадок.

Составьте уравнения реакций, в молекулярном, полном ионном и сокращенном ионном виде. Результаты оформите в виде таблицы.

	$N_{\overline{0}}$	Реактивы	Наблюдения	Вывод и уравнения реакций
	опыта			
1	- •			

Задание4: Разложение нерастворимых оснований.

Оборудование: пробирка, спиртовка, нерастворимое основание — $Cu(OH)_2$ — гидроксид меди (II), порошок черного цвета.

В пробирку насыпаем гидроксид меди (**II**), порошок черного цвета и нагреваем. На стенках пробирки появляются капельки воды. Составить уравнение реакции. Результаты занесите в таблицу.

В конце таблицы сделайте общий вывод по химическим свойствам оснований.

Вариант 2:

Оборудование: растворы солей, оснований, кислот, пробирки, спиртовка.

Задание 2

Составьте формулы оснований: гидроксидов натрия, цинка, лития, меди (II), алюминия, железа (II). Выбрать из списка щелочи и нерастворимые основания.

Задание 2

К раствору щелочи - гидроксида калия (КОН) – бесцветный раствор, добавить:

- а) **индикатор лакмус** (бумажные полоски желтого цвета). Лакмус окрасится в синий цвет. Составить уравнение диссоциации данной щелочи.
- б) добавить полоску лакмуса и прилить раствор **серной кислоты (H2SO**4)— бесцветный раствор, при этом видимых проявлений с растворами не происходит. Лакмус меняет цвет, из синего становится красным, а затем нейтральным(желтым). Как называется данная реакция? Составить уравнение реакции.
- в) раствор **хлорида железа (II)** (**FeCI₂**), желтого цвета. При этом образуется осадок коричневого цвета. Составить уравнение реакции, определите осадок.

Составьте уравнения реакций, в молекулярном, полном ионном и сокращенном

ионном виде. Результаты оформите в виде таблицы.

N₂	Реактивы	Наблюдения	Вывод и уравнения реакций
опыта			
1.			

Задание 4: Разложение нерастворимых оснований.

Оборудование: пробирка, спиртовка, нерастворимое основание — $Fe(OH)_2$ — гидроксид железа (II), порошок коричневого цвета.

В пробирку насыпаем гидроксид железа (**II**), порошок коричневого цвета и нагреваем. На стенках пробирки появляются капельки воды. Составить уравнение реакции. Результаты занесите в таблицу.

В конце таблицы сделайте общий вывод по химическим свойствам оснований.

Тема: «Свойства неорганических соединений».

Задание 5: «Изучение химических свойств солей».

Вариант 1:

Оборудование: растворы солей, оснований, кислот, стеклянная пластинка, пипетки.

Задание 5

Составьте формулы солей: сульфатов лития, цинка, алюминия.

Задание 6. Химические свойства солей

а) К раствору **хлорида железа (II) (FeCI₂), -** желтого цвета добавить раствору щелочи - гидроксида калия (КОН) – бесцветный раствор. При этом образуется осадок коричневого цвета. Составить уравнение реакции

- б) К раствору **хлорида калия (КСІ), -** бесцветный раствор, добавить раствор нитрата серебра бесцветный раствор. При этом образуется осадок белого цвета. Составить уравнение реакции
- в) К раствору карбоната калия добавить раствор соляной кислоты (HCI)— бесцветный раствор, при этом выделяется газ. Какой? Составить уравнение реакции.

Составьте уравнения реакций, в молекулярном, полном ионном и сокращенном ионном виде. Результаты оформите в виде таблицы.

№	Реактивы	Наблюдения	Вывод и уравнения реакций
опыта			
1.			

В конце таблицы сделайте общий вывод по химическим свойствам солей

Вариант 2:

Задание 5. Составьте формулы солей: карбонатов натрия, магния, алюминия Задание 6. Химические свойства солей

- а) К раствору карбоната натрия добавить раствор **соляной кислоты (HCI)** бесцветный раствор, при этом выделяется газ. Какой? Составить уравнение реакции.
- б) К раствору щелочи гидроксида кальция $Ca(OH)_2$ бесцветный раствор, добавить: раствор **сульфата меди (II) (CuSO₄), -** голубого цвета. При этом образуется осадок синего цвета. Составить уравнение реакции.
- В) К раствору **сульфата натрия -** Na₂SO₄, бесцветный раствор, добавить раствор хлорида бария. При этом образуется осадок белого цвета. Составить уравнение реакции.

Составьте уравнения реакций, в молекулярном, полном ионном и сокращенном ионном виде. Результаты оформите в виде таблицы.

№	Реактивы	Наблюдения	Вывод и уравнения реакций
опыта			
1.			

В конце таблицы сделайте общий вывод по химическим свойствам солей.

Практическая работа № 9 «Генетические связи»

Цель: Овладение навыками решения химических задач.

Вопросы для закрепления теоретического материала к практическому занятию:

- 1. Дайте определения понятий: «генетическая связь», «генетический ряд элемента», «генетический ряд металла», «генетический ряд неметалла».
- 2. Какие соединения составляют основу генетического ряда в органической химии?

3. В чем заключается единство и многообразие химических веществ, вовлеченных в процесс превращений?

Задания для практической работы:

Задание №1. Выберите 1 правильный вариант ответа:

Конечным продуктом в цепочке превращений на основе соединений углерода:

$$CO_2 \rightarrow X_1 \rightarrow X_2 \rightarrow NaOH$$

- а) карбонат натрия б) гидрокарбонат натрия
- в) карбид натрия г) ацетат натрия

Задание №2. Установите соответствие между формулами исходных веществ и продуктов реакции:

Формулы исходных веществ

1. Fe + Cl₂
2. Fe + HCl
3. FeO + HCl
4. Fe₂O₃ +HCl

A) FeCl₂
B) FeCl₃
B) FeCl₂ + H₂
T)FeCl₃ + H₂

Д) FeCl₂ + H₂O
E) FeCl₃ + H₂O

Задание №3. Осуществите генетические превращения, определив класс соединений и тип реакции:

- A) Fe $FeCl_2$ $Fe(OH)_2$ $Fe(OH)_3$ $Fe(NO_3)_3$
- Б) C₂H₄ C₂H₅OH CH₃COH CH₃COOC₂H₅
- B) Al AlCl₃ Al(OH)₃ Al₂O₃ Al₂(SO₄)₃
- Γ) CH₃COH C₂H₅OH C₂H₄ C₂H₆ C₂H₅Cl
 - \square) CaC₂ C₂H₂ C₂H₄ C₂H₅Cl C₄H₁₀

Пример выполнения и оформления. Образец вывода:

- 1. В тетради для выполнения практических работ напишите тему практической работы
- 2. Далее должно быть заглавие «Задание №1» и решение задания по составлению возможных уравнений или ответов на вопросы
- 3. Затем заглавие «Задание №2» и решение задания по составлению возможных уравненийили ответов на вопросы ...
- 4. Ит.д.

По окончанию практической работы студент должен представить:-

Выполненную в рабочей тетради практическую работу в соответствии с вышеуказанными требованиями.

Список литературы:

Габриелян О.С., Остроумов И.Г. Химия для профессий и специальностей технического профиля, учебник для студ. учреждений сред.проф. образования. — М., 2019.

Габриелян О.С., Остроумов И.Г., Сладкое С.А., Дорофеева Н.М. Практикум, учеб.пособие для студ. учреждений сред. проф. образования. — М., 2019.

Дисциплина «Химия» Раздел «Неорганическая химия» Тема: Металлы и сплавы.

Практическая работа 10. «Сплавы: чугун и сталь. Ознакомление со структурами серого и белого чугуна». «Решение экспериментальных задач. Распознавания катионов металлов».

Цель: закрепить теоретические знания о сплавах по теме «Металлы»; сформировать практические умения и навыки по выполнению опытов, обращению с лабораторным оборудованием, умения делать выводы и объяснять наблюдаемые явления, записывать уравнения реакции.

Оборудование: образцы металлов и сплавов, коллекция «Металлы и сплавы», таблицы «Свойства легированных сталей и их применение», «Виды и свойства чугунов», «Сплавы некоторых цветных металлов». Реактивы для работы: соли металлов, спиртовка, стеклянная палочка.

Задание 1. Ответьте на вопросы:

- 1. Что такое сплавы?
- 2. По каким признакам классифицируются сплавы? Примеры.
- 3. Что такое легированные стали?

4. Какие свойства придают стали легирующие элементы (хром, никель, титан, вольфрам). Где применяются эти сплавы? Ответ оформите в виде таблицы.

№ п.п.	Легирующий элемент	Свойства, которые придает легирующий	Применение
		элемент	
1.			
2.			
3.			
4.			

5. Состав и применение сплавов цветных металлов: бериллиевой бронзы, латуни, мельхиора, нейзильбера, никелина, электрона. Ответ оформите в виде таблицы.

№ п.п.	Название сплава	Состав сплава	Применение
1.			
2.			
3.			

Задание 2. Ознакомление со структурами серого и белого чугуна.

Ответьте на вопросы:

- 1. Что такое чугун? Виды чугунов.
- 2. Отличие белого чугуна от серого чугуна.
- 3. Свойства и применение белого и серого чугунов. Ответ оформите в виде таблины.

№ п.п.	Вид чугуна	Состав	Свойства	Применение
1.				
2.				

Распознавания катионов металлов

Задание 3. Распознавания катионов металлов по окрашиванию пламени

Алгоритм распознавания катионов металлов по окрашиванию пламени:

- А. получите кристаллические хлориды натрия, калия, кальция, меди; (от лаборанта)
- В. смочите стеклянную палочку дистиллированной водой;
- С. опустите стеклянную палочку в соль и внесите ее в пламя горелки,

выбор -

при пламени фиолетового цвета - катион калия

при пламени зеленого цвета - катион меди

при пламени кирпично-красного цвета - катион кальция

при пламени желтого цвета - катион натрия

Оформите результаты в виде таблицы

№	Реактивы	Наблюдения	Вывод и уравнения реакций
опыта			(написать диссоциацию соли)
1.			

Приложение

Качественные реакции на катионы металлов

Ra reerbenings peaking na Rathonia metassiob				
Ионы и в-ва Реактивы		Признаки		
1. Катионы:				
H^+	Индикаторы	Лакмус красный. Метилоранж красный.		
		Фенолфталеин бесцветный.		
NH^{+}_{4}	Щелочь при t	Бесцветный газ с резким запахом,		

HC1 и СІ" (соль)	F V
- ()	Белый творожистый осадок.
Пламя	Желтое
Пламя	Фиолетовое
Пламя	Кирпично-красное
H ₂ SO ₄ и SO ₄ ² " (соль)	Белый осадок, нерастворимый в воде и
	кислотах.
Щелочь	Голубой осадок
Щелочь	Бесцветный осадок, растворимый в щелочи.
Щелочь	Бледно-зеленый осадок.
Красная кровяная соль	Синий осадок.
Щелочь	Бурый осадок.
CNS (соль)	Кроваво-красное окрашивание.
Желтая кровяная соль	Синий осадок
Щелочь	Белый осадок, растворимый в избытке
	щелочи.
Щелочь	Серо-зеленый осадок, растворимый в
	щелочи.
2. Анионы:	•
Индикаторы	Лакмус синий. Метилоранж желтый.
	Фенолфталеин малиновый.
AgN0 ₃	Белый творожистый осадок,
	нерастворимый в кислотах.
H ₂ SO ₄ и Си при нагрев.	Бурый газ с запахом.
	Черный осадок.
Ва ²⁺ (соль)	Белый осадок
Сильные кислоты	Бесцветный газ с резким запахом,
	помутнение известковой воды.
Сильные кислоты	Бесцветный газ без запаха, помутнение
	известковой воды.
Сильные кислоты	Студенистый осадок.
AgN0 ₃	Желтый осадок, растворимый в
	сильныхкислотах.
	Пламя

Дисциплина «Химия» Раздел «Органическая химия»

Тема: Основные понятия органической химии и теория строения органических соединений **A.** M. Бутлерова.

Лабораторная работа 11. Изготовление моделей молекул органических веществ

Цель: закрепить теоретические знания об изомерии органических веществ. Сформировать практические умения и навыки в составлении изомеров для органических веществ.

Оборудование: химические формулы и модели молекул органических веществ; спички, пластилин (белого, красного, синего цветов).

Задания для лабораторной работы:

Задание 1. Ответьте письменно на вопросы:

- 1. Какие вещества называются органическими?
- 2. Какова валентность атома углерода в органических соединениях? Составьте схему электронного строения атома углерода в возбужденном состоянии.

Задание 2.

- 1. Собрать модели молекул метана, бутана, пентана, гексана. Запишите в тетрадь. Атомы углерода синие, атомы водорода белые, спички это
- 2. Объясните, под каким углом располагаются связи?
- 3. Собрать модели молекул изомеров для пентана, назовите их по систематической номенклатуре. Запишите в тетрадь.
- 4. Сделайте вывод о строении предельных углеводородов.
- 5. Какие вещества называются изомерами?
- 6. Чем объясняется большое многообразие органических веществ?
- 7. Составьте структурные формулы веществ: 2-метилпропана, 3-метилпентана, H-бутана, H-гексана, 2,2-диметилпропана, 2-метилпентана. Найдите среди них изомеры и назовите их.
- 8. Для вещества, формула которого

Составьте структурные формулы 3 изомеров. Назовите все вещества.

Задание 3.

- 1. Написать формулы молекул метана и тетрохлорметана.
- 2. Сделайте общий вывод о строении предельных углеводородов. Какой вид изомерии в предельных углеводородах

Дисциплина «Химия» Раздел «Органическая химия»

Тема: Углеводороды и их природные источники

Лабораторная работа 12. Ознакомление с коллекцией образцов нефти и продуктов ее переработки. Ознакомление с коллекцией каучуков и образцами изделий из резины.

Цель: закрепить теоретические знания о свойствах углеводородов, нефти и продуктах её переработки.

Оборудование: коллекция «Образцы нефти и продукты ее переработки», коллекция «Каучуки и образцы изделий из резины».

Задания для лабораторной работы:

Задание 1. Ответьте письменно на вопросы:

6. Имеет ли нефть формулу? Почему? Коков состав нефти? Сделайте вывод по таблице.

Нефть	Содержание углеводородов в %		одов в %
	Парафины	Нафтены	Ароматические
Грозненская парафинистая	41	47	12

Туймазинская	37	38	24
Доссорская	17	73	9
Шимбайская	35	30	31
Ромашкинская	41	32	27

- 7. Перечислите месторождения нефти в России.
- 8. Изучите физические свойства нефти по образцам в коллекции. Сделайте вывод.
- 9. Каким способом осуществляется перегонка нефти. Какие нефтепродукты получают при этом? Запишите в таблицу.
- 10. Изучите физические свойства нефтепродуктов по образцам в коллекции. Сделайте вывод.
- 11. Где находит применение каждый из нефтепродуктов? Составьте таблицу

Нефтепродукты	Физические	Применение нефтепродуктов
	свойства	

- 12. Составьте уравнение реакции крекинга газойля (предельный углеводород) с числом атомов углерода 18.
- 13. Почему об экономической мощи страны судят по количеству добываемой и особенно потребляемой нефти?

Задание 2.

- 9. Изучите физические свойства каучуков по образцам в коллекции. Сделайте вывод.
- 10. Изучите физические свойства резины по образцам в коллекции. Сделайте вывод. Заполните таблицу

Название	Физические свойства	Применение
Дивиниловый каучук		
Изопреновый каучук		
Резина		

- 11. С помощью, каких реакций получают каучуки? Составьте уравнение реакции полимеризации дивинилового и изопренового каучуков.
- 12. Составьте уравнение реакции полимеризации 2-хлор-бутадиена -1,3, назовите полученное вещество.
- 13. Сделайте вывод о том, к какому классу углеводородов относятся каучуки. С помощью, каких реакций они получаются? В чем особенность таких реакций.

Дисциплина «Химия» Раздел «Органическая химия»

Тема: Кислородосодержащие органические вещества. Практическая работа № 13. «Изучение качественных реакций на органические вешества».

Цель: закрепить теоретические знания о свойствах жиров и углеводов. Сформировать практические умения и навыки, используя компьютерный эксперимент.

Оборудование: растительное масло, гидроксид натрия, бензин, спирт, дистиллированная вода, медный купорос, аммиачный раствор оксида серебра, глюкоза.

Технические средства обучения: компьютер, мультимедийным проектор экран, диск.

Опыт 1: Свойства жиров.

<u>Смотрим на экран</u>. Поместите в 3 пробирки по 1мл дистиллированной воды, спирта, бензина, к них добавьте по 2 капли подсолнечного масла. Встряхните содержимое.

В какой пробирке жиры растворяются лучше?

Несколько капель раствора жира в спирте и бензине нанесите на фильтровальную бумагу.

Что наблюдаете после испарения растворителя?

Результаты опыта занесите в таблицу.

Опыт 2: Превращение жидких жиров в твердые.

Смотрим на экран. Растительное масло насыщают водородом.

Что наблюдаете при этом?

Результаты опыта занесите в таблицу

Опыт 3: Свойства углеводов.

Посмотрите на экран. Проделать качественные реакции на углеводы:

А) «реакцию серебряного зеркала». К 1мл глюкозы добавить 2 мл аммиачного раствора оксида серебра, нагрейте смесь

Что наблюдаете?

О чем свидетельствует данный опыт?

Составьте уравнение соответствующей реакции.

Результаты опыта занесите в таблицу.

Б) реакцию со свежим раствором гидроксида меди (II). В пробирку с 3 каплями медного купороса добавьте 2 мл гидроксида натрия. Что наблюдаете? Затем добавить 2мл глюкозы и перемешайте

Что наблюдаете?

О чем свидетельствует данный опыт?

Нагрейте содержимое пробирки.

Что наблюдаете?

О чем свидетельствует данный опыт?

Составьте уравнение соответствующей реакции.

Результаты опыта занесите в таблицу.

№	Реактивы	Наблюдения	Вывод и уравнения реакций
опыта			
1.			

Задание 3. Проделать качественную реакцию на крахмал: на кусочек белого хлеба или на разрез картофеля капнуть раствор йода, видите характерное темносинее окрашивание. Это и есть качественная реакция на крахмал. Результат записать в таблицу (уравнение на записывать).

Вывод по работе.

Дисциплина «Химия» Раздел «Органическая химия»

Тема: Азотсодержащие органические вещества. Белки.

Лабораторная работа № 14. «Качественные реакции на белок».

Цель: закрепить теоретические знания о свойствах белка. Сформировать практические умения и навыки, используя компьютерный эксперимент.

Оборудование: яичный белок, гидроксид натрия, медный купорос, азотная кислота, нашатырный спирт.

Технические средства обучения: компьютер, мультимедийным проектор экран, диск.

Опыт 1: Биуретовая реакция на белки (реакция со свежим раствором гидроксида меди (II)).

<u>Смотрим на экран</u>. В пробирку с 2 мл белка добавьте 2 мл гидроксида натрия, а затем несколько капель медного купороса (сульфата меди(II)). Встряхните содержимое.

Что наблюдаете?

О чем свидетельствует данный опыт?

Результаты опыта занесите в таблицу

Опыт 2: Ксантопротеиновая реакция на белки.

<u>Смотрим на экран</u>. В пробирку с 2 мл белка добавьте несколько капель азотной кислоты. Что наблюдаете при этом? Нагрейте содержимое. Охладите смесь и добавьте к ней по каплям нашатырный спирт.

Что наблюдаете при этом?

Результаты опыта занесите в таблицу

Опыт 3: Свойства белков.

<u>Посмотрите на экран</u>. Подожгите несколько шерстяных нитей, перья птицы и кусочки натуральной кожи. Охарактеризуйте запах горящих предметов.

Что наблюдаете при этом?

Результаты опыта занесите в таблицу

Таблица результатов опыта.

№	Реактивы	Наблюдения	Вывод и уравнения реакций
опыта			
1.			

Задание 3. Сделать общий вывод о свойствах белков.

Дисциплина «Химия»

Раздел «Органическая химия»

Тема: Кислородосодержащие органические вещества. Азотсодержащие органические вещества

Практическая работа 15. Решение экспериментальных задач на идентификацию органических соединений.

Цель: закрепить теоретические знания о химических свойствах кислородосодержащих и азотсодержащих органических веществ по темам; сформировать практические умения и навыки.

Оборудование: глицерин, гидроксид натрия, медный купорос; аммиачный раствор оксида серебра, глюкоза, уксусная кислота.

Технические средства обучения: компьютер, мультимедийным проектор экран, диск.

<u>Задание.</u> Посмотрите на экран. Вам выданы 3 пробирки под номерами. Определите с помощью соответствующих реакций, в какой пробирке содержатся глицерин, глюкоза, уксусная кислота. Проделать качественные реакции на данные органические вещества. Составьте уравнение соответствующих реакции. Результаты опыта занесите в таблицу.

Опыт 1. Взаимодействие уксусной кислоты с металлами.

<u>Смотрим на экран</u>. В три пробирки добавили несколько гранул цинка. В пробирке под № 1 идет реакция с выделением водорода. Какое вещество в пробирке? Составьте уравнение соответствующей реакции. Результаты опыта занесите в таблицу.

Опыт 2. Определение глицерина и глюкозы.

В две другие пробирки добавляем свежий раствор гидроксида меди (II). Что происходит? Какие признаки реакций вы наблюдаете? Результаты опыта занесите в таблицу. Сделайте вывод о том, в какой пробирке находятся данные вещества.

Опыт 3. Доказательство глюкозы, как альдегидоспирта.

Нагреем обе пробирки. В одной из этих пробирок образуется красный осадок. О чем это свидетельствует? В какой пробирке находится глюкоза, а в какой глицерин? Составьте уравнение соответствующей реакции. Результаты опыта занесите в таблицу.

Таблица результатов опыта.

Ī	№	Реактивы	Наблюдения	Вывод и уравнения реакций
	опыта			
	1.			

Вывод по работе.

Практическая работа № 16 Тестовая итоговая работа по химии (промежуточная аттестация)

Основные темы для проведения дифференцированного зачета

- 1.Основные понятия и законы
- 2. Строение вещества
- 3. Вода. Растворы.
- 4. Электролитическая диссоциация
- 5. Периодический закон и периодическая система химических элементов Д. И. Менделеева на основе представлений о строении атомов. Значение периодического закона для развития науки.

- 6. Строение атомов химических элементов, например:
- а) элементов одного периода
- б) элементов одной группы главной подгруппы Химические реакции
- 7. Виды химической связи в неорганических и органических соединениях: ионная, металлическая, водородная, ковалентная (полярная, неполярная); простые и кратные связи.
- 8. Металлы, их положение в периодической системе химических элементов Д. И. Менделеева, строение их атомов, металлическая связь. Общие химические свойства металлов.
- 9. Общие способы получения металлов.
- 10. Коррозия металлов и ее виды. Защита металлов от коррозии.
- 11. Железо, положение в периодической системе химических элементов Д. И. Менделеева, строение атома, возможные степени окисления, физические свойства, взаимодействие с кислородом, галогенами, растворами кислот и солей. Сплавы железа.
- 12. Общая характеристика щелочно-земельных металлов, строение атомов, физические и химические свойства, важнейшие соединения и применение их в строительстве.
- 13. Окислительно восстановительные реакции.
- 14. Соли, их состав и названия, химические свойства (взаимодействие с металлами, кислотами, щелочами, друг с другом с учетом особенностей реакций окисления-восстановления и ионного обмена).
- 15. Оксиды, их классификация и свойства Основные способы получения. Применение оксилов.
- 16. Основания, их классификация и свойства на основе представлений об электролитической диссоциации.
- 17. Кислоты, их классификация и свойства на основе представлений об электролитической диссоциации.
- 18. Аллотропия неорганических веществ на примере углерода и кислорода.
- 19. Неметаллы, их положение в периодической системе химических элементов Д. И. Менделеева, строения их атомов. Окислительно-восстановительные свойства неметаллов на примере элементов подгруппы кислорода.
- 20. Окислительно-восстановительные свойства серы и её соединений.
- 21. Общая характеристика подгруппы галогенов, строение атомов, возможные степени окисления, физические и химические свойства.
- 22. Реакции ионного обмена в водных растворах. Условия их необратимости.
- 23. Скорость химических реакций. Зависимость скорости от природы, концентрации веществ, температуры, катализатора.
- 24. Обратимость реакций. Химическое равновесие и способы его смещения: изменение концентрации реагирующих веществ, температуры, давления.
- 25. Высшие кислородсодержащие кислоты химических элементов третьего периода, их состав и сравнительная характеристика свойств.
- 26. Общие научные принципы химического производства на примере промышленного способа получения серной кислоты. Защита окружающей среды от химических загрязнений.
- 27. Высшие оксиды химических элементов третьего периода. Закономерности в изменении их свойств в связи с положением химических элементов в периодической системе Д. И. Менделеева.

- 28. Водородные соединения неметаллов. Закономерности в изменении их свойств в связи с положением химических элементов в периодической системе Д. И. Менделеева.
- 29. Электрохимический ряд напряжений металлов. Вытеснение металлов из растворов солей другими металлами.
- 30. Представление о строении вещества. Валентность, Химические формулы. Закон постоянства состава. Относительная и молекулярная масса. Количество вещества. Моль. Молярная масса.
- 31. Дисперсные системы. Растворы как физико-химические системы. Насыщенные и ненасыщенные растворы. Концентрация вещества в растворе по массовой доле (в %). Молярная концентрация растворов.
- 32. Вода как полярный растворитель. Роль воды в электролитической диссоциации. Гидратация ионов. Кристаллогидраты.
- 33. Гидролиз солей. Значение гидролиза в химических процессах, его практическое использование.
- 34. Электролиз. Ряд стандартных электродных потенциалов. Процессы, протекающие на катоде и аноде.

Примерный тест по химии

Итоговый тест проводится для проверки усвоения программного материала и его соответствие государственному образовательному стандарту.

Часть І Общая химия (75 баллов) 1. Указать а)металлы, б) неметаллы. (2б) Cu; O; Cl; Ca; Fe; As; S; K. 2. Указать а) простые, б) сложные вещества (26) Zn; Br₂; KOH; O₂; FeCl₃; H₂SO₄; CuO. Указать степень окисления серы в соединениях: (56) Na₂SO₄; SO₂; Na₂SO₃; Na₂S. Указать соответствие: (6б) Вид связи Свойство Вещество 1. 1) электролит Cl_2 а) ионная 2. CaO б) водородная 2) неэлектролит 3. H_2S в) ковалентная полярная 3) газ Cu г) металлическая 4) жидкость

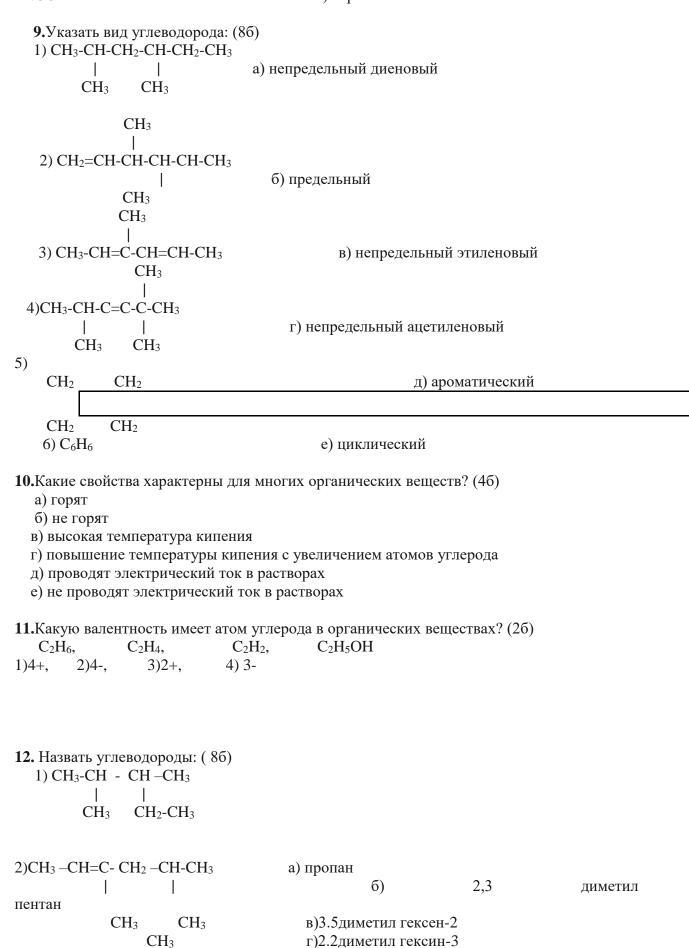
5.Выбрать формулы соответствующих соединений (10б)

1.Оксид азота(II)	KOH
2.Серная кислота	$FeH(CO_3)_2$
3. Фосфат калия (I)	BaOHCl
4.Основной хлорид бария (II)	H_2SO_3
5.Гидрокарбонат железа(III)	Al_2O_3
6.Соляная кислота	Na_2SO_4
7.Гидроксид калия (I)	FeO
8.Оксид железа (II)	Na_3PO_4
9.Оксид алюминия(III)	HCl
10.Сульфат натрия (II)	NO

6. Назвать вещества по международной систематической номенклатуре: (56)

д) ковалентная неполярная

5) твердое вещ-во


а) CaOHCl; б) K₂SO3; в)Ca(OH)₂; г)H₂S; д)N₂O₅.

7.Рассчитать молярную массу карбоната кальция (CaCO₃) (36)

100г/моль; 100 а.е.м.; 68 г/моль; 68 г.

3H₂O

8. Дописать уравнения реакций, расставить коэффициенты, указать тип химической реакции. (8б) $ZnSO_4+KOH \rightarrow ----+ K_2SO_4$ KOH+HCl →H2O+ --- $Na_2O+H_2O \rightarrow$ $HCl + Zn \rightarrow H_2 \uparrow + ---$ 9. Рассчитать объем, который занимают 64 грамма кислорода О2 при нормальных условиях.(3б) 1) 22,4л; 2)44,8л; 3)44,8м; 4)64 м; 10.Указать : а) оксиды; б) основания; в) кислоты; г) соли; Дать им характеристику по классификации. (106) HCl; Zn(OH)₂; CaO; NO₂; Ca(OH)₂; Na₂SiO₃; FeOHCl₂; NaHCO₃; H₂SO₃. 11.Указать среду растворов веществ, записать уравнения гидролиза солей, где это необходимо.(6б) H₂CO₃; KOH; KCl; CuCl₂; Na₂CO₃. 12.Построить схемы строения атомов элементов №24, №30. Записать состав ядра атомов. 13. Осуществить генетическую цепочку превращений: (10б) $Na \rightarrow Na_2O \rightarrow NaOH \rightarrow Na_2SO_4 \rightarrow H_2SO_4 \rightarrow BaSO_4 \downarrow$, подставив вместо стрелок условия протекания реакций: 1)H₂SO₄; 2) H₂O; 3) O₂; 4) HCl; 5) BaCl₂. Записать уравнения реакций, уровнять правые и левые части уравнений. Часть II Органическая химия (75 баллов) Какая формула показывает качественный и количественный состав молекулы? (2б) а) структурная; б) электронная, в) молекулярная. 2. Химией какого элемента называют органическую химию? (2б) а) водорода, б) углерода, в) кислорода. 3. Какие основные классы органических веществ вам известны? (26) 4. Что лежит в основе классификации: (2б) -Углеводородов 1)краткие связи -Кислородосодержащих орг. веществ 2) функциональные группы -Азотосодержащих органических веществ 3) химическая связь 5. Что является природным источником углеводородов? (2б) а) газ, б) каменный уголь, в) нефть, г) железная руда, д) вода. 6.Выбрать молекулярную формулу: (6б) C₂H₆, C₃H₆, C₄H₆, C₄H₁₀, C₆H₆, C₂H₄, CH₄, C₆H₁₀, C₂H₂. а) предельных углеводородов б) этиленовых углеводородов в) ацетиленовых углеводородов **7.**Указать изомеры гексана C₆H1₄: (4б) a) | | | | | **6)** | | | | | в) -C - C - C- C--C-C-C-C--c- c- c- c- c- c-| | -C - C - C--C--C-8.У казать соответствие функциональных групп классам органических веществ: (4б) $1.NH_2$ а) спирты 2.OH б) амины 3.COOH в) альдегиды


```
д)3 пропил гептен-3
 3)CH_3-C=C-CH_3-C-CH_3
                                                           е)5.5 диметил гексин -2
                                                           ж) 2 метил, 3,4диэтил гексадиен-1.4____
                          CH_3
4)CH<sub>3</sub>- CH<sub>2</sub> -CH<sub>3</sub>
                   C_2H_5
  5) CH<sub>2</sub>= C - CH - C=CH-CH<sub>3</sub>
              CH_3
                           C_2H_5
                   CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>3</sub>
6) CH<sub>3</sub> - CH<sub>2</sub>- C=CH-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>3</sub>
13. Указать соответствие веществ классу органических соединений: (10б)
1)CH<sub>3</sub>-CH-CH<sub>3</sub>
                                                           а) карбоновая кислота
           OH
                   OH
  2)CH<sub>3</sub>-CH<sub>2</sub>- C - CH<sub>3</sub>
                                                                б) простой эфир
                   CH<sub>2</sub>-CH<sub>3</sub>
                                      0
    3)CH<sub>3</sub>-CH -CH<sub>2</sub>-CH<sub>2</sub>-C
                                                                             в) сложный эфир
           C_2H_5
                                     OH
    4)CH<sub>3</sub>-CH<sub>2</sub>-CH=CH<sub>2</sub>
                                                                            г)непредельный углеводород
    5)C_6H_{12}O_6
                                                                            д) предельный углеводород
                        0
    6)CH3-CH2-C
                                                                е) альдегид
                              O
    7)CH<sub>3</sub>-CH<sub>2</sub>-CH<sub>2</sub>-C
                                                                  ж) циклический углеводород
                              O-C_2H_5
    8)C<sub>2</sub>H<sub>5</sub>-O-CH<sub>3</sub>
    9)CH<sub>2</sub>-CH<sub>2</sub>
                                                                                                                               3)
    углевод
      CH<sub>2</sub> CH<sub>2</sub>
                                                                       и) фенол
    10)C_6H_5OH
                                                                      к) спирт
14. Как проверить непредельный характер углеводородов (наличие кратных связей) (4б)
   1) + Cl_2
                                                                       3)+Br_2
   2) + H_2
                                                                      4)+KMnO_4
```

15.Указать, с помощью какого реактива можно обнаружить следующие вещества в растворе и по каким признакам: (4б)

Крахмал

а) раствор йода І2

*желтый цвет

Глюкоза

б) раствор FeCl₃

** красный цвет

в) свежеприготовленный раствор Cu(OH)₂

*** синий цвет

16. Составить структурные формулы следующих веществ: (10б)

- **-** 2.4 димитил пентен -1
- -2 метил, 5 этил гептанол-1
- 2 метил бутаналь
- -3метил, 4 пропил гептин-2
- -2 хлор,3 метил пентан
- -2метилпропионовая кислота
- -метиловый эфир уксусной кислоты
- -метиламин
- -2 хлор бензол
- -дихлор этан

17. Указать растворители: (3б)

Бензин

Ацетон

Дихлор этан

Уксусная кислота

Этаналь

Бензол

Критерии оценки

За каждый правильный ответ – 1 балл.

За неправильный ответ – 0 баллов.

Процент результативности (правильных ответов)	Качественная оценка индивидуальных		
	образовательных достижений		
	балл	вербальный аналог	
	(отметка)		
90 ÷ 100	5	отлично	
80 ÷ 89	4	хорошо	
70 ÷ 79	3	удовлетворительно	
менее 70	2	не удовлетворительно	

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

Для обучающихся

Габриелян О.С. Химия: учеб. для студ. проф. учеб. заведений / О.С. Габриелян, И.Г. Остроумов. – М., 2020.

Габриелян О.С. Химия в тестах, задачах, упражнениях: учеб. пособие для студ. сред. проф. учебных заведений / О.С. Габриелян, Г.Г. Лысова – М., 2020.

Габриелян О.С. Практикум по общей, неорганической и органической химии: учеб. пособие для студ. сред. проф. учеб. заведений / Габриелян О.С., Остроумов И.Г., Дорофеева Н.М. – М., 2019.