Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Пономарева Светлана Викторовна Должность: Проректор по УР и НО Дата подписания: 22.12.2023 17:42:47

Уникальный программный ключ: рство науки и высшего образования российской федерации bb52f959411e6461/366ef297/b9/e8/139b1a2d

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (ДГТУ)

АВИАЦИОННО-ТЕХНОЛОГИЧЕСКИЙ КОЛЛЕДЖ

У	ГВЕРЖДАЮ	
Ди	іректор АК	
		_ В.А. Зибров
«	>>	

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ по учебному предмету

ОУП.04.01 Алгебра и начала анализа

программы подготовки специалистов среднего звена (ППССЗ) по специальности среднего профессионального образования 49.02.01 Физическая культура

Ростов-на-Дону

Лист согласования

Фонд оценочных средств учебного предмета разработан в соответствии с требованиями Федерального государственного образовательного стандарта среднего образования (ФГОС СОО), Федерального государственного образовательного стандарта по специальности среднего профессионального образования (далее – ФГОС СПО) 49.02.01 Физическая культура.

Разработчик: Преподаватель Авиационно-технологического колледжа ДГТУ Дима Е. 31.08.2023 г.	A.
Фонд оценочных средств рассмотрен и одобрен на заседании циклово тических и естественнонаучных дисциплин	й комиссии матема-
Протокол № 1 от 31.08.2023 г	
Председатель цикловой комиссии Высоцкая Л.А. 31.08.2023 г.	
Согласовано:	
Рецензенты:	
ГАБОУ РО ДБК преподаватель математики	В.Б.Тарашевич
Авиационно-технологический колледж ДГТУ преподаватель	Н.И.Алькова

Содержание

1. Паспорт фонда оценочных средств	4
1.1 Область применения фонда оценочных средств	
1.2 Требования к результатам освоения учебного предмета	
2. Результаты освоения учебного предмета	
3. Фонд оценочных средств	
3.1. Текущий контроль успеваемости	
3.2 Промежуточная аттестация	
* := == :: <i>j</i>	

1. Паспорт фонда оценочных средств

1.1 Область применения фонда оценочных средств

Фонд оценочных средств предназначен для контроля и оценки образовательных достижений обучающихся, освоивших программу учебного предмета ОУП.04.01 «Алгебра и начала анализа» среднего профессионального образования в пределах ППССЗ.

Фонд оценочных средств разработан в соответствии с требованиями ФГОС СОО, ФГОС СПО 49.02.01 Физическая культура, учебного плана и рабочей программой учебного предмета ОУП.04.01 «Алгебра и начала анализа»

Учебный предмет, в соответствии с учебным планом, изучается на первом курсе в первом и втором семестрах и завершается экзаменами (в 1 и 2 семестре).

Фонд включает в себя контрольно-оценочные материалы, позволяющие оценить приобретенные личностные, метапредметные и предметные результаты обучающихся.

1.2 Требования к результатам освоения учебного предмета

Освоение содержания учебного предмета «Алгебра и начала математического анализа» обеспечивает достижение обучающимися следующих результатов:

Личностные:

- ЛР 4: Проявляющий и демонстрирующий уважение к труду человека, осознающий ценность собственного труда и труда других людей. Экономически активный, ориентированный на осознанный выбор сферы профессиональной деятельности с учетом личных жизненных планов, потребностей своей семьи, российского общества. Выражающий осознанную готовность к получению профессионального образования, к непрерывному образованию в течение жизни Демонстрирующий позитивное отношение к регулированию трудовых отношений. Ориентированный на самообразование и профессиональную переподготовку в условиях смены технологического уклада и сопутствующих социальных перемен. Стремящийся к формированию в сетевой среде личностно и профессионального конструктивного «цифрового следа»
- ЛР 7: Осознающий и деятельно выражающий приоритетную ценность каждой человеческой жизни, уважающий достоинство личности каждого человека, собственную и чужую уникальность, свободу мировоззренческого выбора, самоопределения. Проявляющий бережливое и чуткое отношение к религиозной принадлежности каждого человека, предупредительный в отношении выражения прав и законных интересов других людей
- ЛР 10: Бережливо относящийся к природному наследию страны и мира, проявляющий сформированность экологической культуры на основе понимания влияния социальных, эко-омических и профессионально-производственных процессов на окружающую среду. Выражающий деятельное неприятие действий, приносящих вред природе, распознающий опасности среды обитания, предупреждающий рискованное поведение других граждан, по-пуляризирующий способы сохранения памятников природы страны, региона, территории, поселения, включенный в общественные инициативы, направленные на заботу о них
- ЛР 12: Принимающий российские традиционные семейные ценности. Ориентированный на создание устойчивой многодетной семьи, понимание брака как союза мужчины и женщины для создания семьи, рождения и воспитания детей, неприятия насилия в семье, ухода от родительской ответственности, отказа от отношений со своими детьми и их финансового содержания

Метапредметные:

Регулятивных универсальных учебных действий (РУУД); Познавательных универсальных учебных действий (ПУУД); Коммуникативных универсальных учебных действий (КУУД):

- умение самостоятельно составлять план, алгоритм решения задачи, выбирать способ решения с учётом имеющихся ресурсов и собственных возможностей, аргументировать и корректировать варианты решений с учётом новой информации; (РУУД)
- умение продуктивно общаться и взаимодействовать в процессе совместной деятельности, учитывать позиции других участников деятельности, эффективно разрешать конфликты; (КУУД)
- владение навыками познавательной, учебно-исследовательской и проектной деятельности, навыками разрешения проблем; способность и готовность к самостоятельному поиску методов решения практических задач, применению различных методов познания; (ПУУД)
- готовность и способность к самостоятельной информационно-познавательной деятельности, владение навыками получения необходимой информации из словарей разных типов, умение ориентироваться в различных источниках информации, критически оценивать и интерпретировать информацию, получаемую из различных источников; (ПУУД)
- умение использовать средства информационных и коммуникационных технологий (далее ИКТ) в решении когнитивных, коммуникативных и организационных задач с соблюдением требований эргономики, техники безопасности, гигиены, ресурсосбережения, правовых и этических норм, норм информационной безопасности; (РУУД)
- умение воспринимать и формулировать суждения в соответствии с условиями и целями общения; ясно, точно, грамотно выражать свою точку зрения в устных и письменных текстах, давать пояснения по ходу решения задачи, комментировать полученный результат; (КУУД)
- умение выявлять и характеризовать существенные признаки математических объектов, понятий, отношений между понятиями; формулировать определения понятий; устанавливать существенный признак классификации, основания для обобщения и сравнения, критерии проводимого анализа; (ПУУД)
- умение выявлять математические закономерности, взаимосвязи и противоречия в фактах, данных, наблюдениях и утверждениях; предлагать критерии для выявления закономерностей и противоречий; (ПУУД)
- умение делать выводы с использованием законов логики, дедуктивных и индуктивных умозаключений, умозаключений по аналогии;(ПУУД)
- умение проводить самостоятельно доказательства математических утверждений (прямые и от противного), выстраивать аргументацию, приводить примеры и контрпримеры; обосновывать собственные суждения и выводы; (ПУУД)
- умение выбирать способ решения учебной задачи (сравнивать несколько вариантов решения, выбирать наиболее подходящий с учётом самостоятельно выделенных критериев);(ПУУД)
- участвовать в групповых формах работы (обсуждения, обмен мнениями, «мозговые штурмы» и т.п.); выполнять свою часть работы и координировать свои действия с другими членами команды; оценивать качество своего вклада в общий продукт по критериям, сформулированным участниками взаимодействия; (КУУД)
- умение предвидеть трудности, которые могут возникнуть при решении задачи, вносить коррективы в деятельность на основе новых обстоятельств, данных, найденных ошибок, выявленных трудностей; (РУУД)
- умение оценивать соответствие результата цели и условиям, объяснять причины достижения или недостижения результатов деятельности, находить ошибку, давать оценку приобретённому опыту. (РУУД)

– понимать и использовать преимущества командной и индивидуальной работы при решении учебных задач; принимать цель совместной деятельности, планировать организацию совместной работы, распределять виды работ, договариваться, обсуждать процесс и результат работы; обобщать мнения нескольких людей;(КУУД)

Предметные:

Освоение содержания учебного предмета обеспечивает достижение обучающимися следующих результатов:

- Свободно оперировать понятиями: рациональное число, бесконечная периодическая дробь, проценты; иррациональное число; множества рациональных и действительных чисел; модуль действительного числа.
- Применять дроби и проценты для решения прикладных задач из различных отраслей знаний и реальной жизни.
- Применять приближённые вычисления, правила округления, прикидку и оценку результата вычислений.
- Свободно оперировать понятием: степень с целым показателем; использовать подходящую форму записи действительных чисел для решения практических задач и представления данных.
- Свободно оперировать понятием: арифметический корень натуральной степени.
 - Свободно оперировать понятием: степень с рациональным показателем.
- Свободно оперировать понятиями: логарифм числа; десятичные и натуральные лога рифмы.
- Свободно оперировать понятиями: синус, косинус, тангенс, котангенс числового аргумента.
- Оперировать понятиями: арксинус, арккосинус и арктангенс числового аргумента.
- Свободно оперировать понятиями: комплексное число и множество комплексных чисел; представлять комплексные числа в алгебраической и тригонометрической форме, выполнять 14 арифметические операции с ними и изображать на координатной плоскости.
- Свободно оперировать понятиями: тождество, уравнение, неравенство, равносильные уравнения и уравнения-следствия; равносильные неравенства.
- Применять различные методы решения рациональных и дробнорациональных уравнений; применять метод интервалов для решения неравенств.
- Свободно оперировать понятиями: многочлен от одной переменной; многочлен с целыми коэффициентами, корни многочлена; применять деление многочлена на многочлен с остатком, теорему Безу и теорему Виета для решения задач.
 - Использовать свойства действий с корнями для преобразования выражений.
- Выполнять преобразования числовых выражений, содержащих степени с рациональным показателем.
- Использовать свойства логарифмов для преобразования логарифмических выражений.
- Свободно оперировать понятиями: иррациональные, показательные и логарифмические уравнения; находить их решения с помощью равносильных переходов или осуществляя проверку корней.

- Применять основные тригонометрические формулы для преобразования тригонометрических выражений.
- Свободно оперировать понятием: тригонометрическое уравнение; применять необходимые формулы для решения основных типов тригонометрических уравнений.
- Свободно оперировать понятиями: иррациональные, показательные и логарифмические неравенства; находить их решения с помощью равносильных переходов.
 - Осуществлять отбор корней при решении тригонометрического уравнения.
- Свободно оперировать понятием тригонометрическое неравенство; применять необходимые формулы для решения основных типов тригонометрических неравенств.
- Свободно оперировать понятиями: система и совокупность уравнений и неравенств; равносильные системы и системы-следствия; находить решения системы и совокупностей рациональных, иррациональных, показательных и логарифмических уравнений и неравенств.
- Решать рациональные, иррациональные, показательные, логарифмические и тригонометрические уравнения и неравенства, содержащие модули и параметры.
- Применять графические методы для решения уравнений и неравенств, а также задач с параметрами.
- Моделировать реальные ситуации на языке алгебры, составлять выражения, уравнения, неравенства и их системы по условию задачи, исследовать построенные модели с использованием аппарата алгебры, интерпретировать полученный результат.
- Моделировать реальные ситуации на языке алгебры, составлять выражения, уравнения, неравенства по условию задачи, исследовать построенные модели с использованием аппарата алгебры.
- Свободно оперировать понятиями: функция, способы задания функции; взаимно обратные функции, композиция функций; график функции; выполнять элементарные преобразования графиков функций.
- Свободно оперировать понятиями: область определения и множество значений функции, нули функции, промежутки знакопостоянства.
- Свободно оперировать понятиями: чётные и нечётные функции, периодические функции, промежутки монотонности функции, максимумы и минимумы функции, наибольшее и наименьшее значение функции на промежутке.
- Свободно оперировать понятиями: степенная функция с натуральным и целым показателем, график степенной функции с натуральным и целым показателем; график корня n-ой степени как функции обратной степени с натуральным показателем.
- Оперировать понятиями: линейная, квадратичная и дробно-линейная функции; выполнять элементарное исследование и построение их графиков.
- Свободно оперировать понятиями: показательная и логарифмическая функции, их свойства и графики; использовать их графики для решения уравнений.
- Свободно оперировать понятиями: тригонометрическая окружность, определение тригонометрических функций числового аргумента.
- Использовать графики функций для исследования процессов и зависимостей при решении задач из других учебных предметов и реальной жизни; выражать формулами зависимости между величинами.
- Строить графики композиции функций с помощью элементарного исследования и свойств композиции двух функций.

- Строить геометрические образы уравнений и неравенств на координатной плоскости.
 - Свободно оперировать понятиями: графики тригонометрических функций.
 - Применять функции для моделирования и исследования реальных процессов.
- Свободно оперировать понятиями: арифметическая и геометрическая прогрессия, бесконечно убывающая геометрическая прогрессия; линейный и экспоненциальный рост, формула сложных процентов; иметь преставление о константе е.
 - Использовать прогрессии для решения реальных задач прикладного характера.
- Свободно оперировать понятиями: последовательность, способы задания последовательностей, монотонные и ограниченные последовательности; понимать основы зарождения математического анализа как анализа бесконечно малых.
- Свободно оперировать понятиями: непрерывные функции; точки разрыва графика функции; асимптоты графика функции.
- Свободно оперировать понятием: функция, непрерывная на отрезке; применять свойства непрерывных функций для решения задач.
- Свободно оперировать понятиями: первая и вторая производные функции, касательная к графику функции.
- Вычислять производные суммы, произведения, частного и композиции двух функций; знать производные элементарных функций.
- Использовать геометрический и физический смысл производной для решения задач.
- Использовать производную для исследования функции на монотонность и экстремумы.
- Находить наибольшее и наименьшее значения функции непрерывной на отрезке.
- Использовать производную для нахождения наилучшего решения в прикладных, в том числе социально-экономических, задачах, для определения скорости и ускорения процесса, заданного формулой или графиком.
- Свободно оперировать понятиями: первообразная, определённый интеграл; находить первообразные элементарных функций и вычислять интеграл по формуле Ньютона—Лейбница.
 - Находить площади плоских фигур и объёмы тел с помощью интеграла.
- Иметь представление о математическом моделировании на примере составления дифференциальных уравнений.
- Решать прикладные задачи, в том числе социально-экономического и физического характера, средствами математического анализа.

2. Результаты освоения учебного предмета

Основные показатели и критерии оценки личностных, метапредметных и предметных результатов обучающихся представлены в таблице 1.

Результаты освоения (объекты оценивания)	Основные по- казатели оценки результата	Критерии оценки результата	Тип задания	Форма ат- тестации (в соответ- ствии с учеб- ным планом)
Личностные ЛР 4 ЛР 7 ЛР 10 ЛР 12	- Овладение математическими знаниями и умениями, необходимыми в повседневной жизни, для освоения смежных естественнонаучны х дисциплин профессионального цикла, для получения образования в областях, не требующих углубленной математической подготовки - Осознающий и деятельно выражающий приоритетную ценность каждой человеческой жизни, уважающий достоинство личности каждого человека, собственную и чужую уникальность, свободу мировоззренческого выбора, самоопределения. Проявляющий бережливое и чуткое отношение к религиозной принадлежности каждого человека, предупредительный в отношении выражения прав и законных интересов других людей	Умение в простейших случаях строить математические модели объектов, выбирать оптимальные математические методы решения задач Умение найти и кратко изложить биографические данные известных математиков, информацию об истории возникновения отдельных математических проблем и разработки методов их решения Умение логично обосновать решение, ссылаясь на изученные теоретические факты, умение верно изображать на чертеже изучаемые геометрические тела и воспринимать объект как трехмерный по его изображению, грамотное использование изученных алгоритмов решения задач; умение обосновать выбор метода решения задачи Умение решать прикладные задачи с применением изученных методов Изложение (устное или письменное) результатов самостоятельного изучения теоретических вопросов, решение задач, не рассматриваемых на уроках	Тест Вопросы для обсуждения (собеседования) на занятиях Рекомендуемые темы докладов (сообщений) Устный опрос, аудиторные и домашние самостоятельные работы, Сообщения, доклады, рефераты, устный опрос	Экзамены (1 и 2 семестры)

щийся к природному стоятельному решенаследию страны и нию нестандартных с мира, проявляющий точки зрения сформированность программы задач, экологической самостоятельному культуры на основе изучению необховлияния димых теоретических понимания социальных, фактов экономических И профессиональнопроизводственных процессов окружающую среду. Выражающий тельное неприятие действий, приносящих вред природе, распознающий опасности среды обитания, предупреждающий рискованное поведение других граждан, популяризирующий способы сохранения памятников природы страны, региона, территории, поселения, включенный в общественные инициативы, направленные на заботу о них Принимающий рос-Активное участие в сийские традиционизучении теории, решении ные семейные ценнозадач, сти. Ориентированизготовлении наглядный создание ных на пособий, устойчивой подготовке и провемногодетной семьи, внеклассных дении понимание брака как мероприятий союза мужчины и совместно с другими женщины для создастудентами ния семьи, рождения Проявление деятельи воспитания детей, ного интереса к будунеприятия насилия в щей профессии и к семье, ухода от родивозможности испольтельской ответствензования ней ности, отказа от отматематических знаношений со своими ний детьми и их финансового содержания Умение Метапредметные самостоя-Активная работа на определять уроках, добросовесттельно цели деятельности и ность выполнение досоставлять планы демашних заданий, ятельности; самостосвоевременность результативность поятельно ocvществлять, контролисещения консультаровать и корректироший С целью вать деятельность; ликвидировать

1		
использовать все	имеющиеся пробелы	
возможные ресурсы	в знаниях, исправить	
для достижения по-	нежелательные оцен-	
ставленных целей и	ки	
реализации планов	Выполнение совмест-	
деятельности; выби-	но с другими студен-	
рать успешные	тами творческих ра-	
стратегии в различ-	бот, участие во внеу-	
ных ситуациях	рочных мероприяти-	
Умение продуктив-	ях, способность к	
но общаться и взаи-	взаимовыручке, к	
модействовать в	компромиссам	
процессе совмест-	1	
ной деятельности,		
учитывать позиции		
других участников		
деятельности,		
эффективно раз-		
решать конфликты		
Владение навыками	Самостоятельность	
познавательной,	выполнения индиви-	
учебно-исследо-	дуальных заданий	
вательской и проект-	максимальной для	
ной деятельности,	студента сложности,	
навыками разреше-	самостоятельное	
ния проблем; способ-	изучение имеющихся	
ность и готовность к	материалов к различ-	
самостоятельному	ным формам отчет-	
поиску методов	ности	
решения практиче-		
ских задач, примене-		
нию различных мето-		
дов познания		
Готовность и способ-	Желание и умение	
ность к самостоя-	·	
	цию в учебниках или	
	других печатных ис-	
	точниках, в интер-	
· ·	нете. Стремление на-	
роваться в различ-	учиться оценивать	
1-	достоверность и ак-	
информации, крити-	туальность этой	
	информации, а также	
интерпретировать	интерпретировать ее	
информацию, полу-	применительно к	
чаемую из различ-	решаемой проблеме	
ных источников	<u> </u>	
Владение языковыми	Использование в	
средствами – умение		
ясно, логично и точ-	тельности на уроках	
но излагать свою	и внеурочных ме-	
точку зрения, ис-	роприятиях, соответ-	
пользовать адекват-	ствующих ситуации	
ные языковые сред-	языковых средств	
ства	для четкого и точ-	
	ного изложения	
	своего мнения	
Владение навыками	Стремление студента	
Ziageiiie Habbikawiii	отреживние отудента	

		I
	знания совершаемых действий и мыслительных процессов, их результатов и оснований, границ своего знания и незнания, новых познавательных задач и средств их достижения Целеустремленность в поисках и приня-	неудач и намечая пути исправления ситуации как самостоятельно, так и вместе с
	способность воспри-	не; стремление не только грамотно, но и красиво выполнять чертежи и оформлять записи в конспекте
Предметные	Сформированность представлений о математике как части мировой культуры и о месте математики в современной цивилизации, о способах описания на математическом языке явлений реального мира	Четкое представление (хотя бы в пределах программы дисциплины) о существующих математических методах, условиях их применимости, о математических моделях изучаемых объектов, их значимости в компьютерных технологиях
	Сформированность представлений о математических понятиях как о важнейших математических моделях, позволяющих описывать и изучать разные процессы и явления; понимание возможности аксиоматического построения математических теорий	Умение четко формулировать определения математических понятий, теорем и аксиом; умение различать эти виды понятий
	Владение методами доказательств и алгоритмов решения, умение их применять, проводить доказательные рас-	Применение полученных знаний в доказательстве утверждений, в доказательстве применимости в данной ситуации выбранных методов, в обосновании решений задач

Владение стандарт-Умение находить ными решения рациональприёмами решения рациональных, иррациональных и иррациональных, показательных, ных, показательных, логарифмических, тригонометрических логарифмических, уравнений, тригонометрических нерауравнений и неравенств, их систем, венств, их систем; умение выявлять поиспользование готосторонние решения, вых компьютерных производить проверку истинности попрограмм, в том чисрешений ле для поиска пути лученных решения и иллюстранаиболее рациональным способом, инции решения уравнений и неравенств терпретировать множество решений геометрически; представление о возможностях использоваимеющихся компьютерных программ для определенных типов задач (например, в MS Excel) Сформированность Осознанное формупредставлений об лирование определений и правил вычисосновных понятиях математического ления предела анализа И их функции, производсвойствах, владение ной, неопределенумением характериного и определензовать поведение ного интегралов; функций, использоприменение пределов вание полученных и производных для исследования знаний для описания и анализа реальных функций и решения, зависимостей связанных с таким исследованием прикладных задач Владение основными Четкое формулировапонятиями о плоских ние определений и и пространственных основных свойств геометрических изучаемых геометрифигурах, их основческих тел, формул ных свойствах; для вычисления их сформированность объемов и плошалей умения распознавать поверхностей: на чертежах, моделях знанное применение и в реальном мире этих знаний к решегеометрические нию задач о соответфигуры; применение ствующих реальных свойств объектах изученных геометрических фигур и формул для решения геометрических задач и задач с практическим содержанием Сформированность Формулирование представлений определений случай-

процессах и ного события, видов случайных событий, явлениях, имеющих суммы и произведевероятностный ния событий; вычисхарактер, ление подходящими статистических способами вероятнозакономерностях реальном мире, об стей событий. основных понятиях числение математиэлементарной теории ческого ожидания и вероятностей; дисперсии случайной умений находить и величины как оценивать основных характеривероятности стиках. Нахождение наступления событий основных характерипростейших стик выборки практических (среднее выборочное, ситуациях мода, медиана). основные Представление 0 характеристики возможности случайных величин свойствам выборки оценить свойства генеральной совокупности Владение навыками Рациональное использования готопользование привых компьютерных ложения MS Excel для приближенного программ при решении задач решения уравнений, выполнения расчетов в таблицах, построедиаграмм частности, графиков функций И стограммы статистического распределения выборки)

3. Фонд оценочных средств

3.1. Текущий контроль успеваемости

Текущий контроль проводится с целью установления соответствия достижений, обучающихся требованиям образовательной программы к результатам обучения и формирования компетенций, обеспечения своевременной обратной связи, для коррекции обучения, активизации самостоятельной работы обучающихся. Текущий контроль успеваемости осуществляется в ходе повседневной учебной работы по учебному предмету. Практические и тестовые задания представлены в качестве демонстрационного варианта

Задания для текущего контроля с критериями оценивания Диагностическая работа для абитуриентов (демонстрационный вариант)

Вариант 1	Вариант 2
<u>2</u> _ <u>5</u>	$\frac{3}{2}$ $-\frac{2}{3}$
1. Вычислить: 8 ³ ·16 ⁻⁴ .	1. Вычислить: $25^{\frac{7}{2}} \cdot 27^{-\frac{3}{3}}$.
2. Решить уравнение: $7\frac{2}{3}-4,5 \cdot x=5\frac{1}{6}$	2. Решить уравнение: $7\frac{3}{5} + 4,1 \cdot x = 10\frac{1}{3}$
3. Решить уравнение: $3x^2 - 4x - 7 = 0$.	3. Решить уравнение: $5x^2 + x - 6 = 0$.
$\frac{2x-1}{x} - \frac{2+5x}{x} > 4$	$\frac{4x-5}{3} - \frac{3-2x}{3} < 3$
4. Решить неравенство: 3 6 .	4. Решить неравенство: 2 4 .

 $3x^2 + 5x \le 0$ 5. Решить неравенство:

4x+7y=29,iiii

6. Решить систему уравнений:

7. Найти площадь треугольника, длины сторон 7. Найти площадь прямоугольного треугольника, которого равны 10 см, 10 см и 12 см

 $\overline{7x^2} - 15x \ge 0$ 5. Решить неравенство:

6. Решить систему уравнений:

гипотенуза которого равна 15 см, а катет 9 см.

Время выполнения работы 40 минут.

Оценка	Критерии оценивания
Отлично	Выполнены верно все семь заданий
Хорошо	Выполнены верно не менее пяти заданий
<i>Удовлетворительно</i>	Выполнены верно не менее трех заданий
Неудовлетворительно	В остальных случаях

Практическая работа 1. Действия с рациональными числами(демонстрационный вариант)

Вариант 1 1. Какие из чисел 8; 3,14; $\sqrt[3]{0.125}$ являются рациональными?

2. Представьте обыкновенной дробью число 5,(18).

 $2\frac{1}{3}+2\frac{1}{12}\cdot(1,25-1,64:0,8)$ 3. Вычислите:

Вариант 3

2. 1. Какие из чисел –3; 2,38; $\sqrt[3]{0.9}$ являются рациональными?

2. Представьте обыкновенной дробью число 23,(6).

 $(4,15-24,96:2,4)\cdot\frac{8}{75}-\frac{16}{75}$ 3. Вычислите:

Время выполнения работы 20 минут.

Оценка	Критерии оценивания
Отлично	Верно и с обоснованиями выполнены все 3 задания
Хорошо	Верно выполнены хотя бы 2 задания, включая задание 3
<i>Удовлетворительно</i>	Верно выполнены хотя бы задания 1 и 2
Неудовлетворительно	В остальных случаях

Практическая работа 2. Действия с действительными числами(демонстрационный вариант)

Вариант 1	Вариант 2	
1. Представьте в стандартном виде числа	1. Представьте в стандартном виде числа	
37560000 и 0,0000342.	53900000 и 0,00000789.	
2. Представьте обыкновенной дробью число	2. Представьте обыкновенной дробью число	
0,3(175).	0,015(1).	
3. Вычислите: 3,(15):1,0(5)	3. Вычислите: 5,(27)-4,0(3)	

Время выполнения работы 20 минут.

Оценка	Критерии оценивания
Отлично	Верно выполнены все 3 задания
Хорошо	Верно выполнены задания 1 и 3
<i>Удовлетворительно</i>	Верно выполнены задания 1 и 2
Неудовлетворительно	В остальных случаях

Практическая работа 3.

Абсолютная и относительная погрешности, верные цифры приближения

- 1. Округлите число 15,7832 до 0,01 с избытком.
- 2. Все цифры приближения a=0,576 верные. Найдите его абсолютную и относительную погрешности.
- 3. Найдите верные цифры приближения a=1,387 , если $\delta a \le 2\%$.
- 1. Округлите число 6,27652 до 0,001 с недостатком
- 2. Все цифры приближения a=3,47 верные. Найдите его абсолютную и относительную погрешности.
- 3. Найдите верные цифры приближения a=0,739 , если $\delta a \leq 4\%$.

Время выполнения работы 15 минут.

Оценка	Критерии оценивания	
Отлично	Верно и с обоснованиями выполнены все 3 задания	
Хорошо	Верно выполнены задания 1 и 2, найдена абсолютная погрешность приближения в задании 3	
<i>Удовлетворительн</i> о	Верно выполнены хотя бы 2 задания	
Неудовлетворителя	ьно В остальных случаях	

Практическая работа 4. Выполнение арифметических действий с приближенными числами

Вариант 2
1. Найдите разность приближений 6,9231 и
0,058. Результат округлите до последней вер-
ной цифры.
2. Найдите произведение приближений 3,7122
и 56,8. Результат округлите до последней
верной цифры.
3. Вычислите и округлите результат до по-
следней верной цифры: 3,76+2,453:4,7
'' 1 ' 11

Время выполнения работы 10 минут.

Оценка	Критерии оценивания
Отлично	Верно выполнены все 3 задания
Хорошо	Верно выполнено задание 3
<i>Удовлетворительно</i>	Верно выполнено задания 1 и 2
Неудовлетворительно	В остальных случаях

Практическая работа 5. Понятие о комплексных числах

- 1. Найти сумму, разность, произведение и частное чисел $^{\mathbf{Z}_{1}}$ и $^{\mathbf{Z}_{2}}$.
- 2. Изобразить данное число z в виде вектора на комплексной плоскости.
- 3. Решить уравнение на множестве комплексных чисел.

	Вариант 1	Вариант 2	Вариант 3
1.	$z_1 = -3 + 5i$, $z_2 = 2 + 7i$	1. $z_1 = 4 + 9i$, $z_2 = 3 - 2i$	1. $z_1 = 6 - 4i$, $z_2 = 3 + 8i$
2.	z=4+3i	2. $z=24+7i$	2. z=8+15 <i>i</i>
3.	$2z^2 + 6z + 17 = 0$	3. $4z^2-8z+13=0$	3. $5z^2+2z+13=0$

Время выполнения работы 20 минут.

Оценка	Критерии оценивания
Отлично	Верно выполнены все 3 задания
Хорошо	Верно выполнены хотя бы 2 задания
<i>Удовлетворительно</i>	Верно выполнено хотя бы 1 задание
Неудовлетворительно	В остальных случаях

Практическая работа 6. Решение рациональных уравнений и неравенств с одной переменной

Вариант 1

1 - 7. Решить уравнения и неравенства:

1.
$$3(5 x+4)-7(x+2)=4$$

2.
$$37x > -7$$

3.

$$\frac{x-5}{4} - \frac{3x-4}{6} > \frac{x}{12}$$

4.
$$2x^2-7x+3=0$$

5.
$$x^2 - 1 \le 0$$

$$(x^2+3x)^2+2(x^2+3x)-8=0$$

7.
$$x^3 - 4x^2 - 5x > 0$$

Вариант 2

1 - 7. Решить уравнения и неравенства:

1.
$$3(5 x+3)-5(x+4)=-13$$

2.
$$-5x>28$$

$$\frac{x+2}{12} - \frac{3x-5}{6} \le \frac{x}{3}$$

4.
$$2x^2+11x-6=0$$

5.
$$x^2 + 14x \ge 0$$

6.
$$(x^2-5x)^2-10(x^2-5x)+24=0$$

$$7 \quad x^3 - 6x^2 + 9x < 0$$

Время выполнения работы 45 минут.

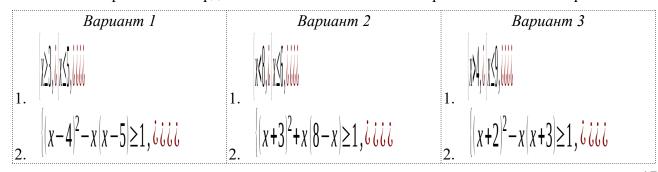
Оценка	Критерии оценивания
Отлично	Верно выполнены задания 3, 6 и 7
Хорошо	Верно выполнены задания 1 - 4
<i>Удовлетворительно</i>	Верно выполнены задания 3 - 5
Неудовлетворительно	В остальных случаях

Практическая работа 7.

Решение систем рациональных уравнений с двумя переменными

1 - 2. Решить системы.

	Вариант 1		Вариант 2		Вариант 3
1.	3x+4y=6, iiii	1.	2x-3y=6, iiii	1.	2x-5 y= 7 , i i i i
2.	x-y=5, i i i i	2.	x+y=4, iiii	2.	$x+y=-2$, $\ddot{i}\ddot{i}\ddot{i}\ddot{i}$


Время выполнения работы 20 минут.

Оценка	Критерии оценивания	
Отлично	Верно выполнены оба задания	
Хорошо	Верно выполнено задание 2	
<i>Удовлетворительно</i>	Верно выполнено задание 1	
Неудовлетворительно	В остальных случаях	

Практическая работа 8.

Решение систем линейных неравенств с одной и двумя переменными

- 1 2. Решить систему неравенств.
- 3. Изобразите на координатной плоскости множество решений системы неравенств.

2 <i>x</i> − <i>y</i> ≥5, iiii	3x+y≤7, iiii	2x+y≥7, <mark>ċċċċ</mark>
--------------------------------	--------------	---------------------------

Время выполнения работы 25 минут.

Оценка	Критерии оценивания
Отлично	Верно выполнены все три задания
Хорошо	Верно выполнены задания 1 и 3 или 2 и 3
<i>Удовлетворительно</i>	Верно выполнены задания 1 и 2
Неудовлетворительно	В остальных случаях

Практическая работа 9. Свойства числовых функций

- 1. Найдите область определения функции.
- 2. Найдите множество значений функции.
- 3. Установите, является ли функция четной или нечетной.
- 4. Найдите интервалы монотонности функции.

	Вариант 1	Вариант 2	Вариант 3
1.	$y=\sqrt{3}x-7$	1. $y = \sqrt[3]{4x-5}$	1. $y = \sqrt[4]{7 - 2x}$
2.	$y = x^2 - 4x + 5$	2. $y=x^2-12x+29$	2. $y=x^2+8x+7$
3.	$y=x^3+3x$	3. $y=x^2-6$	3. $y=2x+3$
4.	$y=2-x^2$	4. $y=(x-5)^2$	4. $y=x^2-3$

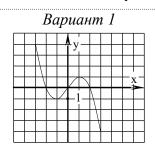
Время выполнения работы 20 минут.

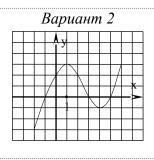
Оценка	Критерии оценивания
Отлично	Верно выполнены все четыре задания
Хорошо	Верно выполнены любые три задания
<i>Удовлетворительно</i>	Верно выполнены любые два задания
Неудовлетворительно	В остальных случаях

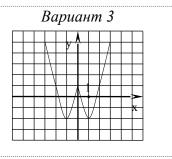
Практическая работа 10. Преобразования графиков функций

1 – 5. Построить график функции (можно схематически).

Вариант 1	Вариант 2	Вариант 3
1. $y=(x-3)^2-4$	1. $y=(x+5)^2-2$	1. $y=(x+2)^2+3$
2. $y=(x+4)^3+3$	2. $y=(x-1)^3+3$	2. $y=(x+4)^3-2$
3. $y = \sqrt{x+2}$	3. $y = \sqrt{x+1}$	3. $y = \sqrt{x-5}$
4. $y = \sqrt[3]{x} - 5$	4. $y = \sqrt[3]{x+2}$	4. $y = \sqrt[3]{x} + 4$
$y = \frac{6}{x-5} + 2$	$y = \frac{8}{x+4} + 3$	$y = \frac{4}{x-1} + 3$


Время выполнения работы 25 минут.


Оценка	Критерии оценивания	
Отлично	Верно выполнены все пять заданий	
Хорошо	Верно выполнены любые четыре задания	
<i>Удовлетворительно</i>	Верно выполнены любые три задания	
Неудовлетворительно	В остальных случаях	


Практическая работа 11.

Исследование свойств функции по ее графику

1. По данному графику функции определить ее свойства: область определения; множество значений; наименьшее и наибольшее значения; четность или нечетность; интервалы монотонности; нули функции; интервалы знакопостоянства.

2. Построить график функции и определить ее свойства (те же).

Вариант 1
$v = \frac{6}{100} + 3$
$y = \frac{y}{x+2} + 3$

Bариант 2
$$y=\sqrt[3]{y+2}$$

Вариант 3
$$y = |x - 5| + 2$$

Вариант 2 Вариант 3 Вариант 4 Вариант 5
$$y = \sqrt[3]{x+2}$$
 $y = |x-5|+2$ $y = (x-4)^3 - 1$ $y = \sqrt{x-2} + 1$

Bapuaнт 5
$$y = \sqrt{x-2} + 1$$

Вариант 6
$$y = (x+3)^2 - 2$$

Время выполнения работы 30 минут.

Оценка	Критерии оценивания
Отлично	Верно полностью выполнены оба задания
Хорошо	Верно полностью выполнено задание 1, построен график и указаны хотя бы два свойства функции в задании 2
<i>Удовлетворительно</i>	Верно полностью выполнено хотя бы одно задание
Неудовлетворительно	В остальных случаях

Практическая работа 12. Степени и корни, их свойства

	Вариант 1	Вариант 2	Вариант 3
	1 – 5. Вычислить:	1 – 5. Вычислить:	1 – 5. Вычислить:
1.	$\sqrt[3]{8.0,027}$	1. $\sqrt[4]{405} \cdot \sqrt[4]{0,5}$	1. $\sqrt[5]{243.0,00032}$
	$\sqrt[5]{160}$	$\frac{4}{405} \cdot \sqrt[4]{0,5}$	$\frac{\sqrt[4]{162}}{}$
2.	$\sqrt[5]{5}$ 4. $8^{-\frac{3}{3}}:7^2$	$3. 6^{3+\sqrt[3]{40}}:36^{1+\sqrt[3]{5}}$	2. $\sqrt[4]{2}$
3.	$7^{5-\sqrt{18}} \cdot 343^{-1+\sqrt{2}}$	$\frac{2}{4}$ $125^{\frac{3}{3}} \cdot 3^{-4}$	3. $11^{5-\sqrt{12}} \cdot 121^{-2+\sqrt{3}}$
	$-\frac{1}{2}$	4. 125 · 3	$-\frac{3}{4}$ $-\frac{3}{4}$
4.	8 3:72	$\sqrt{6} \cdot \sqrt{11} \cdot \sqrt{6} \cdot \sqrt{11}^{2}$	4. 81 4:2 3
5.	$\left(\sqrt{8+\sqrt{15}}+\sqrt{8-\sqrt{15}}\right)^2$	5. (VO-VII+VO+VII)	$\sqrt{3+\sqrt{5}+\sqrt{3-\sqrt{5}}}^2$

Время выполнения работы 20 минут.

Оценка	Критерии оценивания
Отлично	Верно выполнены все пять заданий
Хорошо	Верно выполнены четыре задания
<i>Удовлетворительно</i>	Верно выполнены три задания
Неудовлетворительно	В остальных случаях

Практическая работа 13. Степенная функция, ее свойства и графики

		Вариант 1				Вариант 2		
1.	Построить	схематически	график	функции 1.	Построить	схематически	график	функции

$y = x^{-0.4}$.	$y = x^{0,3}$.
2. Определить тип монотонности функции	2. Определить тип монотонности функции
$y = x^{3,4}$.	$y = x^{-1,4}$.
3. Сравнить числа $0,63^{1,7}$ и $0,65^{1,7}$.	3. Сравнить числа 1,3 ^{0,87} и 1,4 ^{0,87} .
4. Решить неравенство $(2x-6)^{0.9} \le 5^{0.9}$	4. Решить неравенство $(4x+8)^{-1,3} \le 9^{-1,3}$
5. Решить неравенство $0.3^{3x-5} > 0.4^{3x-5}$	5. Решить неравенство 1,5 ⁴ x+ ⁷ <1,4 ^{4x+7}

Время выполнения работы 15 минут.

Оценка	Критерии оценивания
Отлично	Верно и с пояснениями выполнены все 5 заданий
Хорошо	Верно и с пояснениями выполнены 4 задания
<i>Удовлетворительно</i>	Верно и с пояснениями выполнены 3 задания
Неудовлетворительно	В остальных случаях

Практическая работа 14. Решение иррациональных уравнений и неравенств

Вариант 1	Вариант 2	Вариант 3
Решить уравнения и нера-	Решить уравнения и нера-	Решить уравнения и нера-
венства:	венства:	венства:
1. $\sqrt[3]{6x+7} = -5$	1. $\sqrt[4]{8x-6}=2$	1. $\sqrt[5]{4-3x}=-2$
2. $x - \sqrt{3x+1} = 3$	2. $x + \sqrt{5x - 1} = 5$	2. $\sqrt{x+7}-x=1$
$\sqrt{3x-2}-\sqrt{x}=2$	3. $\sqrt{3x+1} - \sqrt{x-1} = 2$	$\sqrt{5x+1} - \sqrt{x+1} = 2$
$4. \sqrt{7x-21} \le 4$	$4. \sqrt{3x-14} > 2$	$4. \sqrt{4x-15} \le 3$
$5. \sqrt{2x+3} \ge \sqrt{7-x}$	$\int_{5.} \sqrt{28-4x} \ge \sqrt{x-3}$	$_{5.}$ $\sqrt{2x+17} < \sqrt{4-x}$

Время выполнения работы 45 минут.

Оценка	Критерии оценивания
Отлично	Верно и с пояснениями выполнены все 5 заданий
Хорошо	Верно и с пояснениями выполнены 4 задания
<i>Удовлетворительно</i>	Верно и с пояснениями выполнены 3 задания
Неудовлетворительно	В остальных случаях

Практическая работа 15. Показательная функция, ее свойства и графики

Вариант 1	Вариант 2
1. Построить схематически график функции	1. Построить схематически график функции
$y=2,3^{x}$.	$y=0.6^x$
2. Определить тип монотонности функции	2. Определить тип монотонности функции
$y=0.8^{x}$.	$y=2,1^x$
3. Сравнить числа 0,75 ^{1,8} и 0,75 ^{1,6} .	3. Сравнить числа 1,3 ^{0,87} и 1,3 ^{0,89} .
4. Решить неравенство $1,8^{4x-1} > 1,8^{6x+5}$.	4. Решить неравенство $0.4^{5-4x} < 0.4^{7x-6}$.
5. Решить неравенство $(3x+6)^{0,3} \le (3x+6)^{0,4}$	5. Решить неравенство $(2x-8)^{1,4} \ge (2x-8)^{1,3}$

Время выполнения работы 15 минут.

Оценка	Критерии оценивания	
Отлично	Верно и с пояснениями выполнены все 5 заданий	
Хорошо	Верно и с пояснениями выполнены 4 задания	

Удовлетворительно	Верно и с пояснениями выполнены 3 задания	
Неудовлетворительно	В остальных случаях	

Практическая работа 16. Решение показательных уравнений и неравенств

Вариант 1	Вариант 2	Вариант 3
Решить уравнения и нера-	Решить уравнения и нера-	Решить уравнения и нера-
венства:	венства:	венства:
1. $6^{x^2-2x}=216$	1. $3^{x^2-3x}=81$	1. $12^{x^2+x}=144$
2. $3^{x+2} + 7 \cdot 3^x = 144$	2. $2^{x+3} - 5 \cdot 2^x = 96$	2. $7^{x+1} + 4 \cdot 7^x = 539$
3. $25^x - 30.5^x + 125 = 0$	3. $121^x + 5 \cdot 11^x - 6 = 0$	$3. 9^x - 30.3^x + 81 = 0$
4. $8^{5x+11} \ge 32$ 5.	4. $49^{6x-7} < 343$ 5.	4. $125^{2x-3} \le 25$ 5.
$\frac{2^{x}}{3^{x}} < \frac{8}{27}$	$\frac{5^x}{2^x} \ge \frac{125}{8}$	$\frac{3^{x}}{7^{x}} > \frac{9}{49}$
6. $9^x - 7 \cdot 3^x - 18 \ge 0$	6. $9^x - 12 \cdot 3^x + 27 < 0$	6. $25^x - 4 \cdot 5^x - 5 \ge 0$

Время выполнения работы 45 минут.

Оценка	Критерии оценивания	
Отлично	Верно и с пояснениями выполнены 6 или 5 заданий	
Хорошо	ерно и с пояснениями выполнены 4 задания	
<i>Удовлетворительно</i>	Верно и с пояснениями выполнены 3 задания	
Неудовлетворительно	В остальных случаях	

Практическая работа 17. Определение логарифма. Основное логарифмическое тождество

Вариант 1	Вариант 2
$\log \frac{1}{2}$	log <u>1</u>
1. Вычислить: 105 ₃ 81	1. Вычислить: 1063 81
2. Вычислить: $\log_4 8.\sqrt[5]{2}$	2. Вычислить: $\log_4 8 \cdot \sqrt[5]{2}$
3. Вычислить: 5 ^{2+log₅8}	3. Вычислить: 5 ^{2+log₅8}
$\frac{1}{3}$ + $\log_2 7$	4 Reпислить: $8^{\frac{1}{3} - \log_2 7}$
4. Вычислить: 8 ³	1. DB INCHITE.
5. Решить уравнение: $\log_7(4x+15)=2$	5. Решить уравнение: $\log_4(15-4x)=3$

Время выполнения работы 20 минут.

Оценка	Критерии оценивания	
Отлично	Верно и с пояснениями выполнены все 5 заданий	
Хорошо	Верно и с пояснениями выполнены 4 задания	
<i>Удовлетворительно</i>	Верно и с пояснениями выполнены 3 задания	
Неудовлетворительно	3 остальных случаях	

Практическая работа 18. Логарифм произведения, частного, степени. Переход к новому основанию логарифма

Вариант 1	Вариант 2	Вариант 3
1. Вычислить:	1. Вычислить: log ₆ 8+log ₆ 27 .	1. Вычислить: $\log_{30} 36 + \log_{30} 25$. 2. Вычислить: $\log_2 80 - \log_2 5$. 3. Вычислить: $3\log_{40} 2 + \frac{1}{2}\log_{40} 25$
	3 310	2 -40 .

310856 - 310856 10	5. С помощью МК найти с точно-	i i
4. Вычислить: log ₈ 16 5. С помощью МК найти с точностью 0,01 корень уравнения $3,5^x=12,4$:	стью 0,01 корень уравнения 5,7 [*] =0,45

Время выполнения работы 25 минут.

Оценка	Критерии оценивания	
Отлично	Верно и с пояснениями выполнены все 5 заданий	
Хорошо	Верно и с пояснениями выполнены 4 задания	
<i>Удовлетворительно</i>	Верно и с пояснениями выполнены 3 задания	
Неудовлетворительно	В остальных случаях	

Практическая работа 19. Логарифмирование и потенцирование

Вариант 1	Вариант 2	Вариант 3
1. Найти	1. Найти	1. Найти
$x = \frac{a^3 \cdot \sqrt[7]{b}}{c^{1,2}} \log_a b = 2,1$	$x = \frac{b^2 \cdot \sqrt[5]{a}}{c^{0,3}}$	$x = \frac{b^4 \cdot \sqrt[3]{c}}{a^2} \log_a b = 1,3 ,$
$\log_a c = 0.5$	$\log_a b = -1.4$	$\log_a c = 2,4$
 Найти x, если 	$\log_a c = 1.6$	2. Найти <i>x</i> , если
$\log_a x = 4 \log_a 3 + \frac{1}{7} \log_a 128$	2. Найти <i>x</i> , если 1	$\log_a x = 2\log_a 7 + \frac{1}{3}\log_a 8$
. $3-5$.С помощью МК вычислить с точностью 0,001: 3. $\ln x$, если $x=\sqrt[5]{38,52}\cdot7,83^{-1,4}$; 4. x , если $\log_{2,74}x=0,32$; 5. x , если $\ln x=-1,53$	$\log_a x = 3\log_a 4 - \frac{1}{6}\log_a 64$. 3 – 5.С помощью МК вычислить с точностью 0,001: 3. $\ln x$, если	$3-5.$ С помощью МК вычислить с точностью 0,001: 3. $\ln x$, если $x=\sqrt[4]{1,765}\cdot 0,76^{1,9}$; 4. x , если $\log_{2,96}x=-0,73$; 5. x , если $\ln x=3,17$

Время выполнения работы 30 минут.

Оценка	Критерии оценивания	
Отлично	Верно и с пояснениями выполнены все 5 заданий	
Хорошо	Верно и с пояснениями выполнены 4 задания	
<i>Удовлетворительно</i>	Верно и с пояснениями выполнены 3 задания	
Неудовлетворительно В остальных случаях		

Практическая работа 20. Логарифмическая функция, ее свойства и графики

Вариант 1	Вариант 2
1. Построить схематически график функции $y = \log_{2,3} x$.	1. Построить схематически график функции $y = \log_{0.5} x$.
2. Определить тип монотонности функции $y = \log_{0.9} x$	2. Определить тип монотонности функции $y = \log_{0,9} x$.
•	3. Сравнить числа $\log_{1,6} 0,54$ и $\log_{1,6} 0,49$.
4. Решить неравенство $\log_{0,9} x > \log_{0,9} 6$ 5. Решить неравенство $\log_{x-5} 17 > \log_{x-5} 12$	4. Решить неравенство. 5. Решить неравенство $\log_{x-5} 17 > \log_{x-5} 12$

Время выполнения работы 20 минут.

Оценка	Критерии оценивания	
Отлично	Верно и с пояснениями выполнены все 5 заданий	
Хорошо	Верно и с пояснениями выполнены 4 задания	
<i>Удовлетворительно</i>	Верно и с пояснениями выполнены 3 задания	
Неудовлетворительно В остальных случаях		

Практическая работа 21. Решение логарифмических уравнений и неравенств

Вариант 1	Вариант 2	Вариант 3
Решить уравнения и нера-	Решить уравнения и нера-	Решить уравнения и нера-
венства:	венства:	венства:
$ \begin{array}{ll} 1. & \log_7(5x-4)=3 \\ 2. & \end{array} $	$\log_{25}(6-8x) = \frac{1}{2}$	$\log_{\frac{1}{3}}(12x+7) = -4$
$\log_2(x+1) + \log_2(x+9) = 7$	2.	$\log_3(x+5) + \log_3(x-1) = 3$
$\frac{3}{3}$ $5\log_3 x - 2\log_x 3 = 9$	$\log_2(x+17) - \log_2(x-7) = 3$	$\frac{2}{3}$ $2\log_3 x - 3\log_x 3 = 5$
$\log_{\underline{1}}(6x+3) > -2$	3. $3\log_3 x + 8\log_x 3 = 14$	$\log_2(12x-6) \ge 3$
4. $\overline{5}$	$\log_6(6x+3) \le 2$	5.
5.	5.	$\log_{0.3}(8x-11) < \log_{0.3}(3x+5)$
$\log_5(30 - 5x) \le \log_5(2x + 9)$	$\log_{0,8}(2x-11) > \log_{0,8}(3x+5)$	- 0,5

Время выполнения работы 45 минут.

Оценка	Критерии оценивания	
Отлично	Верно и с пояснениями выполнены все 5 заданий	
Хорошо	Верно и с пояснениями выполнены 4 задания	
<i>Удовлетворительно</i>	Верно и с пояснениями выполнены 3 задания	
Неудовлетворительно	В остальных случаях	

Контрольная работа 1. Решение иррациональных, показательных, логарифмических уравнений и неравенств

Вариант І	Вариант 2
1. Решить уравнение: $5^{x^2+2x}=125$.	1. Решить уравнение: $\log_2(3x+5) - \log_2(x-5) = 3$
2. Решить уравнение: $x - \sqrt{3}x + 1 = 3$.	-
3. Решить неравенство:	2. Решить уравнение: $\sqrt{3}x + 16 - x = 2$
$\log_5(6x-12) \leq \log_5 30$	3. Решить неравенство: 0,343 ^{5x+11} <0,49
4. Вычислить: $2^{-1+\log_2 3}$.	4. Вычислить: $\log_4 \log_2 256$.
5. Решить графически неравенство:	5. Решить графически неравенство: 3 ^x <9
$\log_1 x \ge -3$	or romand rpupartoons nopulation
$\overline{2}$	

Время выполнения работы 45 минут.

Оценка	Критерии оценивания
Отлично	Выполнены верно и с пояснениями все 5 заданий
Хорошо	Выполнены верно и с пояснениями 4 задания
<i>Удовлетворительно</i>	Выполнены верно и с пояснениями 3 задания
Неудовлетворительно	В остальных случаях

Практическая работа 22. Соотношения между тригонометрическими функциями

одного и того же аргумента

Вариант 1
$$\sin \alpha = \frac{7}{25}$$
 , $\sin \alpha = \frac{7}{25}$, $\cos \alpha$, если $\cos \alpha = \frac{5}{13}$, $\alpha \in \left(0; \frac{\pi}{2}\right)$. $\cos \alpha = \frac{5}{13}$, $\alpha \in \left(0; \frac{\pi}{2}\right)$. $\cos \alpha = \frac{5}{13}$, $\alpha \in \left(0; \frac{\pi}{2}\right)$. $\cos \alpha = \frac{5}{13}$, $\alpha \in \left(0; \frac{\pi}{2}\right)$. $\cos \alpha = \frac{5}{13}$, $\alpha \in \left(0; \frac{\pi}{2}\right)$. $\cos \alpha = \frac{5}{13}$, $\alpha \in \left(0; \frac{\pi}{2}\right)$. $\cos \alpha = \frac{5}{13}$, $\alpha \in \left(0; \frac{\pi}{2}\right)$. $\cos \alpha = \frac{5}{13}$, $\alpha \in \left(0; \frac{\pi}{2}\right)$. $\cos \alpha = \frac{5}{13}$, $\alpha \in \left(0; \frac{\pi}{2}\right)$. $\cos \alpha = \frac{40}{9}$, $\alpha \in \left(\pi; \frac{3\pi}{2}\right)$. α

Время выполнения работы 20 минут.

Оценка	Критерии оценивания	
Отлично	Выполнены верно и с пояснениями все 3 задания	
Хорошо	Выполнено верно и с пояснениями задание 2	
<i>Удовлетворительно</i>	Выполнено верно и с пояснениями задание 1 или 3	
Неудовлетворительно	В остальных случаях	

Практическая работа 23. Тригонометрические функции суммы и разности двух аргументов, двойного и половинного аргументов

<i>Вариант 1</i> 1 – 4. Вычислить без таблиц и МК:	<i>Вариант 2</i> 1 – 4. Вычислить без таблиц и МК:	
1. $\cos 17^{\circ} \cdot \cos 43^{\circ} - \sin 17^{\circ} \cdot \sin 43^{\circ}$	1. sin 23°·cos 37°+cos 23°·sin 37°.	
$\sin\left(\alpha + \frac{\pi}{3}\right)$, echiu $\sin\alpha = -0.6$,	$ 2. tg\left(\alpha + \frac{\pi}{6}\right) , ecлu cos \alpha = \frac{4}{3} ,$	
$\alpha \in \left(\frac{3\pi}{2}; 2\pi\right)$	$\alpha \in \left(\pi; \frac{3\pi}{2}\right) .$	
3. tg 22°30′	3. sin 22°30′	

Время выполнения работы 20 минут.

Оценка	Критерии оценивания	
Отлично	Выполнены верно и с пояснениями все 3 задания	
Хорошо	Выполнено верно и с пояснениями задания 1 и 2 или 2 и 3	
Удовлетворительно	Выполнено верно и с пояснениями одно задание	
Неудовлетворительно	В остальных случаях	

Практическая работа 24. Преобразование суммы и разности тригонометрических функций в произведение. Преобразование произведения тригонометрических функций в сумму или разность

	Вариант	1	Варианп	n 2	
1.	Преобразовать в cos 73°+ cos 13°	произведение:	1. Преобразовать sin 54°+sin 6°	В	произведение:
2. 1	Преобразовать в сумму:	sin 64°·cos 26°.	2. Преобразовать в сумму	₇ : (cos 77°·cos17°.

	$\sin x + \sin 5x$		$\sin 3x - \sin x$
3. Упростить выражение:	$\cos x + \cos 5x$	3. Упростить выражение:	$\cos 3x - \cos x$

Время выполнения работы 20 минут.

Оценка	Критерии оценивания
Отлично	Выполнены верно и с пояснениями все 3 задания
Хорошо	Выполнено верно и с пояснениями задания 1 и 3 или 2 и 3
<i>Удовлетворительно</i>	Выполнено верно и с пояснениями одно задание
Неудовлетворительно	В остальных случаях

Практическая работа 25. Четность, нечетность, периодичность тригонометрических функций. Формулы приведения

D 1	n 2
Вариант I	Вариант 2
$tg\left(-rac{\pi}{3} ight)$.	$\sin\left(-rac{\pi}{4} ight)$.
2. Вычислить: sin 750°.	2. Вычислить: соs 1110°.
3. Вычислить: соs (-225°)	3. Вычислить: tg (-240°)
4. Упростить выражение:	4. Упростить выражение:
$\cos(2\pi + \alpha) \cdot \cos(-\alpha) - \cos\left(\frac{3\pi}{2} - \alpha\right) \cdot \sin(-\alpha)$	$\cos(2\pi-\alpha)\cdot\cos(-\alpha)-\sin(\pi-\alpha)\cdot\cos\left(\frac{3\pi}{2}-\epsilon\right)$

Время выполнения работы 20 минут.

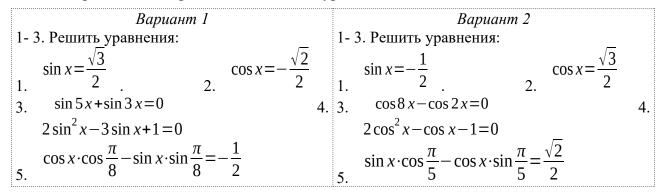
Оценка	Критерии оценивания	
Отлично	Выполнены верно все четыре задания	
Хорошо	Выполнены верно три задания, включая задание 4	
<i>Удовлетворительно</i>	Выполнены верно задания 1,2, 3 или 1 и 4, или 2 и 4	
Неудовлетворительно	В остальных случаях	

Практическая работа 26. Доказательство тригонометрических тождеств

Вариант 1	Вариант 2	
1- 3. Доказать тождество:	1-3. Доказать тождество:	
$\frac{(1-\cos\alpha)(1+\cos\alpha)}{}=ta^2\alpha$	$\frac{\sin \alpha - 1}{2} = \frac{\cos \alpha}{2}$	
1. $(1-\sin\alpha)(1+\sin\alpha)^{-ig}$	1. $\cos \alpha$ 1+ $\sin \alpha$	
2. $(\sin \alpha - \cos \alpha)^2 = 1 - \sin 2\alpha$	$2. \cos^4 \alpha - \sin^4 \alpha = \cos 2 \alpha$	
$\sin\left(\frac{\pi}{4} + \alpha\right) - \cos\left(\frac{\pi}{4} - \alpha\right) = 0$	$\cos\left(\frac{\pi}{6} - \alpha\right) - \sin\left(\frac{\pi}{3} + \alpha\right) = 0$	

Время выполнения работы 30 минут.

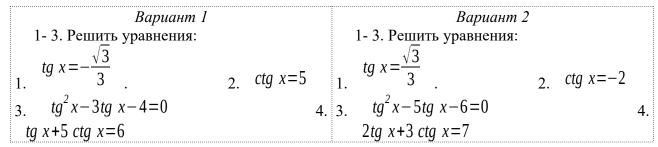
Оценка	Критерии оценивания
Отлично	Выполнены верно все три задания
Хорошо	Выполнены верно два задания
<i>Удовлетворительно</i>	Выполнены верно одно задание
Неудовлетворительно	В остальных случаях


Практическая работа 27. Графическое решение простейших тригонометрических уравнений и неравенств

Вариант 1	Вариант 2	
1- 3. Решить графически уравнения и нера-	- 1- 3. Решить графически уравнения и нера-	
венство:	венство:	
$\sin x = \frac{\sqrt{2}}{2} , x \in [0; 2\pi]$	$\sin x = -\frac{\sqrt{3}}{2} , x \in [0; 2\pi]$	

Время выполнения работы 30 минут.

Оценка	Критерии оценивания	
Отлично	Выполнены верно все четыре задания	
Хорошо	Выполнены верно три задания	
<i>Удовлетворительно</i>	Выполнены верно два задания	
Неудовлетворительно	В остальных случаях	


Практическая работа 28. Решение уравнений вида $\sin x = a$, $\cos x = a$

Время выполнения работы 30 минут.

Оценка	Критерии оценивания	
Отлично	Выполнены верно все пять заданий	
Хорошо	Выполнены верно четыре задания	
<i>Удовлетворительно</i>	Выполнены верно три задания	
Неудовлетворительно	В остальных случаях	

Практическая работа 29. Решение уравнений вида tgx=a , ctgx=a

Время выполнения работы 20 минут.

Оценка	Критерии оценивания
Отлично	Выполнены верно все четыре задания
Хорошо	Выполнены верно три задания
<i>Удовлетворительно</i>	Выполнены верно два задания
Неудовлетворительно	В остальных случаях

Контрольная работа 2. Решение тригонометрических уравнений и неравенств

	Вариант 1		Вариднт 2
1. Вычислить	$\sin\left(\alpha + \frac{\pi}{6}\right)$, ec.ni	$\sin \alpha = \frac{12}{13}$ 1. 1	$\cos\left(\alpha + \frac{\pi}{4}\right)$, если

$$\alpha \in \left(\frac{\pi}{2}; \pi\right)$$
.

2. Доказать тождество: $\frac{\frac{\sin 2\alpha}{1 - \cos 2\alpha} = ctg \, \alpha}{1 + tg \, 9 \, x \cdot tg \, 4x} = -1$

3. Решить уравнение: $3\cos^2 x + 2\cos x - 1 = 0$

5. Решить графически неравенство
$$tg \, x \ge -1 \quad \text{при}$$
 $x \in \left(-\frac{\pi}{2}; \frac{\pi}{2}\right)$.

$$\cos \alpha = -\frac{40}{41}$$
 , $\alpha \in \left[\pi; \frac{3\pi}{2}\right]$. $\cos 2\alpha = \frac{1 - tg \alpha}{1 + tg^2 \alpha}$.

2. Доказать тождество:

3. Решить уравнение:
$$\sin 2x \cdot \cos 5x + \cos 2x \cdot \sin 5x = \frac{\sqrt{3}}{2}$$

- 4. Решить уравнение: $2tg^2x + 5tg x + 3 = 0$
- 5. Решить графически неравенство:

$$\cos x \le \frac{\sqrt{3}}{2} \qquad x \in \left[-\frac{\pi}{2}; \frac{\pi}{2} \right]$$

Время выполнения работы 45 минут.

Оценка	Критерии оценивания	
Отлично	Выполнены верно все пять заданий	
V	D	
хорошо	Выполнены верно четыре задания	
<i>Удовлетворительно</i>	Выполнены верно три задания	
Неудовлетворительно	В остальных случаях	

Практическая работа 30. Вычисление пределов

Вариант 1	Вариант 2	Вариант 3
1 – 5. Вычислить пределы:	1 – 5. Вычислить пределы:	1 – 5. Вычислить пределы:
$\lim_{1 \to 0} \frac{3x^2 - 6x}{x^2 - 4}$	$\lim_{1. x \to 0} \frac{5 x^2 + 20 x}{x^2 - 16}$	$\lim_{1, x \to 0} \frac{2x^2 - 10x}{x^2 - 25}$
	1. $x \to 0$ $x^2 - 16$	* ·
$\lim_{x \to -2} \frac{3x^2 - 6x}{x^2 - 4}$	$\lim_{x \to 4} \frac{5x^2 + 20x}{x^2 - 16}$	$\lim_{x \to -5} \frac{2x^2 - 10x}{x^2 - 25}$
	: - ·	:
$\lim_{3 \to 2} \frac{3x^2 - 6x}{x^2 - 4}$	$\lim_{3, x \to -4} \frac{5x^2 + 20x}{x^2 - 16}$	$\lim_{3, x \to 5} \frac{2x^2 - 10x}{x^2 - 25}$
,		
$\lim \frac{3x^2-6x}{2}$	$\lim_{4. x \to \infty} \frac{5 x^2 + 20 x}{x^2 - 16}$	$\lim_{x \to \infty} \frac{2x^2 - 10x}{x^2 - 25}$
$4. x \to \infty X^ 4$: · · · · · · · · · · · · · · · · · · ·
$ \lim_{x \to \infty} \frac{3x^2 - 6x}{x^2 - 4} $ $ \lim_{x \to \infty} \frac{\sqrt{x - 2}}{x - 4} $ 5. $\lim_{x \to 4} \frac{\sqrt{x - 2}}{x - 4}$.	$\lim_{5 \to x \to 9} \frac{\sqrt{x-3}}{x-9}$	$\lim_{5} \frac{x-49}{\sqrt{x}-7}$
5. $x \to 4$ $X - 4$.	$5. x \rightarrow 9 X - 9 .$	$5. x \to 49 \ \forall \ X - / .$

Время выполнения работы 25 минут.

Оценка	Критерии оценивания	
Отлично	Верно выполнены все пять заданий	
Хорошо	Верно выполнены хотя бы четыре задания	
Удовлетворительно	Верно выполнены хотя бы три задания	
Неудовлетворительно В остальных случаях		

Практическая работа 31. Применение пределов к исследованию функций

- 1 2. Исследовать функцию на непрерывность и точки разрыва.
- 3. Составить уравнения асимптот данной кривой.

Вариант І	Вариант 2	Вариант 3
-	v=i/sin x . x < 0 : i, i, i, i	-
	1. J com n, n=0,0000	

1.
$$y = \sqrt{\frac{1}{x^2 + 3}}$$
, $x < 1$; $y = \frac{x^2 - 9}{x - 3}$.
2. $y = \frac{5x}{x - 2}$.
3. $y = \frac{5x^2}{x - 4}$.
3. $y = \frac{3x^2}{x + 5}$.
3. $y = \frac{3x^2}{x + 2}$.

Время выполнения работы 15 минут.

Оценка	Критерии оценивания
Отлично	Верно и с обоснованиями выполнены все три задания
Хорошо	Верно и с обоснованиями выполнены хотя бы два задания
<i>Удовлетворительно</i>	Верно и с обоснованиями выполнено хотя бы одно задание
Неудовлетворительн	о В остальных случаях

Практическая работа 32. Вычисление производных и дифференциалов

- 1 3. Найти производную данной функции в произвольной точке.
- 4. Найти производную данной функции в данной точке $x_0 = 1$
- 5. Найти $df(x_0)$, если даны значения x_0 и dx.

Вариант 1	Вариант 2	Вариант 3
$1. y = \ln x \cdot (5e^x + 3x)$	1. $y = \cos x \cdot (6\sqrt{x} - 4)$	1. $y=e^x \cdot (5x + \ln x)$
$z = \frac{4x+3}{3}$	$\frac{2x^3}{1-x^3}$	$\frac{5x^2-2}{}$
2. x^2-1 .	2. $x+5$.	2. x+4 .
3. $y = 3\sin 5t$	3. $y = 6\cos 2t$	3. $y=8e^{3t-5}$.
4. $f(x)=2x^3\cdot\sqrt[5]{x^2}$.	4. $f(x) = 5x^2 \cdot \sqrt[4]{x^3}$.	4. $f(x) = 4x^5 \cdot \sqrt[3]{x^2}$
5. $f(x)=5e^x-6x$, $x_0=0$,	5. $f(x)=12\ln x+3x$,	5. $f(x) = 3\sin x - 2x$
dx=0,02	$x_0 = 4$, $dx = 0.01$.	$x_0 = 0$, $dx = 0.03$.

Время выполнения работы 20 минут.

Оценка	Критерии оценивания
Отлично	Верно выполнены все пять заданий
Хорошо	Верно выполнены хотя бы четыре задания
<i>Удовлетворительно</i>	Верно выполнены хотя бы три задания
Неудовлетворительно	В остальных случаях

Практическая работа 33. Применение производных к решению физических задач

Вариант 1			Вариан	ım 2	
1. Тело массой т=3 кг	движется прямолинейно	1. Тело массой	$m=4 \text{ K}\Gamma$	движется	прямолиней-
$S = \frac{1}{2}t^3 + 4t$	$t^2 - 5t + 12$		$S = \frac{2}{2}t^3 -$	$-5t^2 + 6t + 2$) -
по закону 3	. Найдите	но по закону	3		. Найдите
кинетическую энергию тела и действующую не		кинетическую	энергию т	гела и дейст	гвующую не
него силу в момент $t=2 c$		него силу в мо			
2. Количество электричества, протекающего		2. Количество э			екающего
через поперечное сечение проводника за		через попереч			
$_{ m время}$ $[0;t]$, $q(t)$ =2cos5 t . Найдите		$_{ m время}$ $[0;t]$	q(t)=3	$\cos 4t$. Ha	айдите
силу тока в момент t=2 c .		силу тока в м	омент t	=3 <i>c</i>	

Время выполнения работы 30 минут.

Оценка	Критерии оценивания	
Отлично	Верно выполнены оба задания	

Хорошо	Верно выполнено задание 1 или одна часть задания 1 и задание 2	
<i>Удовлетворительно</i>	Верно выполнена одна часть задания 1 или задание 2	
Неудовлетворительно В остальных случаях		

Практическая работа 34. Уравнение касательной к графику функции. Применение дифференциала к приближенным вычислениям

Вариант 1 1. Составьте уравнение касательной к кривой $y=5e^x+2x-7$ в ее точке с абсциссой $x_0=0$.	Вариант 2 1. Составьте уравнение касательной к кривой $y=5\sin x-3x+2$ в ее точке с абсциссой $x_0=0$.
2. Найдите $df(25)$, если $f(x)=8\sqrt{x}-2x$, $dx=0,03$. 3. Вычислите приближенно $\sqrt[7]{150}$, приняв $x_0=128$	2. Найдите $df(9)$, если $f(x)=6\sqrt{x}+5x$, $dx=0,02$. 3. Вычислите приближенно $\sqrt[6]{60}$, приняв $x_0=64$
Вариант 3 1. Составьте уравнение касательной к кривой $y=8\sqrt{x}+7x-1$ в ее точке с абсциссой $x_0=4$.	Вариант 4 1. Составьте уравнение касательной к кривой $y=3\cos x-5x+6$ в ее точке с абсциссой $x_0=0$.
2. Найдите $df(4)$, если $f(x)=3\sqrt{x}-6x$, $dx=0,01$. 3. Вычислите приближенно $\sqrt[5]{40}$, приняв $x_0=32$	2. Найдите $df(49)$, если $f(x)=4\sqrt{x}+9x$, $dx=0,03$. 3. Вычислите приближенно $\sqrt[8]{240}$, приняв $x_0=256$

Время выполнения работы 20 минут.

Оценка	Критерии оценивания
Отлично	Верно выполнены все три задания
Хорошо	Верно выполнены любые два задания
<i>Удовлетворительно</i>	Верно выполнено одно задание
Неудовлетворительно	В остальных случаях

Практическая работа 35. Применение производных к исследованию функций

Вариант 1

- 1. Докажите, что функция $y=x^3+6x-1$ возрастает на всей области определения.
- 2. Найдите интервалы монотонности и точки экстремума функции $y=x^3-3x^2-45x+7$
- 3. Найдите интервалы выпуклости и точки перегиба графика функции $y = x^4 - 24 x^2 - 6$

Вариант 2

- 1. Докажите, что функция $y=6-2x^3$ убывает на всей области определения.
- 2. Найдите интервалы монотонности и точки экстремума функции $y=x^3-3x^2-45x+7$

$$y=x^3-3x^2-45x+7$$

3. Найдите интервалы выпуклости и точки перегиба графика функции

$$y=x^4-24x^2-6$$

Время выполнения работы 30 минут.

Оценка	Критерии оценивания
Отлично	Верно и с обоснованиями выполнены все три задания
Хорошо	Верно и с обоснованиями выполнены хотя бы два задания
<i>Удовлетворительно</i>	Верно и с обоснованиями выполнено хотя бы одно задание
Неудовлетворительно	В остальных случаях

Практическая работа 36. Исследование функций и построение графиков

Вариант 1	Вариант 2	
1. Исследовать функцию $y = -x^3 + 6x^2 + 11$ с	1. Исследовать функцию $y=x^3+3x^2-9x+1$ с	
помощью пределов и производных и построить	помощью пределов и производных и построить	
ее график	ее график	
Вариант 4	Вариант 5	
1. Исследовать функцию $y=-x^3+3x^2+45x-2$	1. Исследовать функцию $y=x^3-75x+14$ с	
с помощью пределов и производных и по-	помощью пределов и производных и по-	
строить ее график	строить ее график	

Время выполнения работы 20 минут.

Оценка	Критерии оценивания
Отлично	Верно найдены область определения функции, точки экстремума и точка пе-
	региба графика; верно построен график
Хорошо	Верно найдены область определения функции, точки экстремума и точка пе-
	региба графика; неверно построен или не построен график
Удовлетворительно	Верно найдены область определения и точки экстремума функции
Неудовлетворительно	В остальных случаях

Практическая работа 37. Нахождение наименьшего и наибольшего значений функции

Вариант 1

- 1. Найти наибольшее и наименьшее значения $y = -x^3 + 6x^2 + 11$ функции на отрезке |-1;3|
- 2. Сумма двух положительных чисел равна 18. Найдите наибольшее из возможных значений их произведения.

Вариант 2

- 1. Найти наибольшее и наименьшее значения $y=x^3+3x^2-9x+1$ функции на отрезке -2;2
- 2. Сумма катетов прямоугольного треугольника равна 16. Найдите наименьшее из возможных значений его гипотенузы.

Время выполнения работы 30 минут.

Оценка	Критерии оценивания
Отлично	Верно и с обоснованиями выполнены оба задания
Хорошо	Верно выполнено задание 1 и найдена целевая функция в задании 2
	или верно и с обоснованием выполнено задание 2
Удовлетворительно	Верно выполнено задание 1

Неудовлетворительно В остальных случаях

Практическая работа 38. Вычисление неопределенных и определенных интегралов

Вариант 1	Вариант 2	Вариант 3	
1 – 5. Вычислить интегралы	1 – 5. Вычислить интегралы	1 – 5. Вычислить интегралы	
$\int \left(4x^8 + \frac{3}{2\sqrt{x}} + 5\right) dx$	$\int \left(2x^5 + \frac{7}{\cos^2 x} - 6\right) dx$	$\int \left(3x^8 - \frac{8}{x} + 12\right) dx$	
$\int \left(7 x^5 - \frac{12}{\cos^2 x} + 3\right) dx$	$\int \left(7 x^5 - \frac{12}{\cos^2 x} + 3\right) dx$	$\int \left(7x^5 - \frac{12}{\cos^2 x} + 3\right) dx$	
$\int_{0}^{\frac{\pi}{4}} \left(6\sin x - \frac{4}{\cos^2 x} + 3 \right)$	$\int_{0}^{\frac{\pi}{4}} \left(6\sin x - \frac{4}{\cos^2 x} + 3 \right)$	3. $\int_{0}^{\frac{\pi}{4}} \left(6\sin x - \frac{4}{\cos^2 x} + 3 \right)$	
$ \int_{-2}^{1} (5x-2)^3 dx $	4. $\int_{-2}^{1} (5x-2)^3 dx$	$ \int_{-2}^{1} (5x-2)^3 dx $	
$\int \frac{6x}{x^2 + 4x + 5} dx$	$\int \frac{6x}{x^2 + 4x + 5} dx$	$\int \frac{6x}{x^2 + 4x + 5} dx$	

Время выполнения работы 20 минут.

дач

Оценка	Критерии оценивания	
Отлично	Верно выполнены 5 заданий	
Хорошо	Верно выполнены 4 задания	
<i>Удовлетворительно</i>	Верно выполнены 3 задания	
Неудовлетворительно	В остальных случаях	

Практическая работа 39. Применение интегралов к решению геометрических за-

Вариант 1 1 - 3. Вычислить площадь фигуры, ограниченной линиями: 1. y=0, $y=x^3$, x=22. y=0, $y=x^3$, y=30-x3. x=0, $y=x^3$, y=30-x3. y=0, y=0

Время выполнения работы 30 минут.

Оценка	Критерии оценивания	
Отлично	Верно выполнены задания 2 и 3	
Хорошо	Верно выполнено задание 2 или 3	
<i>Удовлетворительно</i>	Верно выполнено хотя бы одно задание	
Неудовлетворительно В остальных случаях		

Практическая работа 40. Применение интегралов к решению физических задач

Вариант 1 Вариант 2 1. Тело движется прямолинейно со скоро-1. Тело движется прямолинейно со скоро $v(t) = 24t - 3t^2$. Найти среднюю v(t)=24-4t . Найти среднюю скоскорость тела за первые 2 секунды движерость тела за 3 секунды до остановки. 2. Сила тока в момент равна ния. I(t)=2 sin 5 t . Найти среднюю силу тока 2. Сила тока в момент равна . Найти среднюю силу тока $0;\frac{\pi}{}$ за время за время

Время выполнения работы 40 минут.

Оценка	Критерии оценивания		
Отлично	Верно и с обоснованием выполнены оба задания		
Хорошо	Верно, но без обоснований выполнены оба задания		
<i>Удовлетворительно</i>	Верно выполнено хотя бы одно задание		
Неудовлетворительно В остальных случаях			

Контрольная работа 3. Основы математического анализа

Вариант 1

$$\lim_{x \to 9} \frac{x^2 - 81}{x^2 - 9x}$$

- 1. Вычислить предел: $x \to 9 x^2 9 x$
- 2. Найти производную функции $y = \sin x \cdot (2x e^x)$
- 3. Вычислить интеграл:

$$\int \left(2x^8 - \frac{9}{2\sqrt{x}} - 10\right) dx$$

- 4. Найти интервалы монотонности и точки экстремума функции $y=x^3-12x+6$.
- 5. Вычислить площадь фигуры, ограниченной линиями y=0 , $y=10x-x^2$.

Вариант 2

$$\lim \frac{2x^3 + 9x^2}{1 + 1}$$

- . Вычислить предел: $x \to 0 + 6x^3 + x$
- 2. Найти производную функции

$$y = \frac{\cos x}{1 + x^2}$$

3. Вычислить интеграл:

$$\int \left(\frac{2}{3}x^6 - 10\sin x + 9\right) dx$$

4. Найти интервалы выпуклости и точки перегиба графика функции

$$y=x^3-9x^2+24x-1$$

5. Вычислить площадь фигуры, ограниченной линиями y=0 , $y=-x^2+6x-8$

Время выполнения работы 45 минут.

Оценка	Критерии оценивания
Отлично	Верно и с обоснованием решены все задания
Хорошо	Верно и с обоснованием решены четыре задания, включая задания 4 и 5
<i>Удовлетворительно</i>	Верно решены три задания, включая задание 4
Неудовлетворительно	В остальных случаях

Тест 1. Числовые функции, их свойства (демонстрационный вариант)

- 1. Функцией называется соответствие между двумя множествами, при котором...
 - А ... каждому элементу первого множества соответствует хотя бы один элемент второго множества.
 - Б ... каждому элементу первого множества соответствует единственный элемент второго множества.
 - В ... каждому элементу первого множества соответствует один и тот же элемент второго множества.
 - Γ ... разным элементам первого множества соответствуют разные элементы второго множества.
- **2.** Если для любого значения x, принадлежащего области определения функции f(x), выполняется условие f(-x)=f(x), то функция f(x) называется...

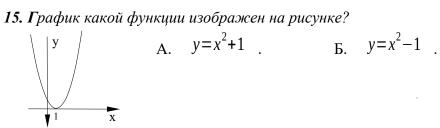
А ...четной. Б ...нечетной. В ...постоянной. Г ...монотонной.

3. Если для любых двух значений аргумента, принадлежащих данному промежутку, большему значению аргумента соответствует меньшее значение функции, то функция называется...

А ...четной. Б ...нечетной. В ...возрастающей. Г ...убывающей.

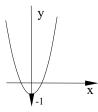
4. Соответствие между двумя множествами, при котором какому-нибудь элементу пер-
вого множества соответствуют два разных элемента второго множества,
А не является функцией.
Б не является постоянной функцией.
В не является монотонной функцией.
$\Gamma \dots$ не является четной функцией.
5. Если функция $f(x)$ определена на отрезке $[-3;3]$, причем выполняется условие $f(-3)=f(3)$, то функция $f(x)$
А является четной. Б не является четной.
$B \dots$ является нечетной. $\Gamma \dots$ не является нечетной.
6. Если функция $f(x)$ определена на отрезке $[-2;5]$, причем выполняется условие
f(5) > f(-2) , то на данном отрезке функция $f(x)$
А является убывающей. Б не является убывающей.
\mathbf{B} является возрастающей. Γ не является возрастающей.
7. Если функция $f^{(X)}$ не является четной, то она
А обязательно является нечетной. Б не может быть нечетной.
В может быть нечетной. Гне является ограниченной.
8. Если функция является четной, то ее график
А симметричен относительно оси абсцисс.
Б симметричен относительно оси ординат.
В симметричен относительно начала координат.
Γ может не иметь осей и центров симметрии.
9. График данной функции симметричен относительно начала координат. Какое из утверждений верно?
А Функция может не быть ни четной, ни нечетной.
Б Функция является четной.
В Функция является нечетной.
Г График функции не может быть симметричен относительно начала координат.
10. График данной функции симметричен относительно оси абсцисс. Какое из утверждений верно?
А Функция может не быть ни четной, ни нечетной.
Б Функция является четной.
В Функция является нечетной.
Г График функции не может быть симметричен относительно оси абсцисс.
11. График данной функции симметричен относительно оси ординат. Какое из утверждений верно?
А Функция может не быть ни четной, ни нечетной.
Б Функция является четной.
В Функция является нечетной.
Г График функции не может быть симметричен относительно оси ординат.
v = f(x + a) a > 0

12. График функции y=f(x+a), a>0 получается параллельным переносом графика функции y=f(x) на "а" единиц...

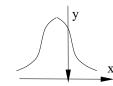

 ${\sf A}$...влево. ${\sf B}$...вверх. ${\sf \Gamma}$...вниз.

13. График функции y=f(x)-a, a>0 получается параллельным переносом графика функции y=f(x) на "а" единиц...

 ${\bf A}$...влево. ${\bf B}$...вниз. ${\bf C}$...вниз.


- **14.** Областью определения функции является промежуток [-5;7] . Какое из перечисленных утверждений верно?
 - А. Функция является четной.
 - Б. Функция является нечетной.
 - В. Функция не является ни четной, ни нечетной.

Г. Утверждения А, Б и В неверны.


B.
$$y=(x+1)^2$$
 . Γ . $y=(x-1)^2$

16. График какой функции изображен на рисунке?

B.
$$y=(x+1)^2$$
 . Γ . $y=(x-1)^2$

17. Какими из перечисленных свойств обладает функция, график которой изображен на рисунке?

Б.

- А. Является четной.
- Является нечетной.
 - В. Не является четной и не является нечетной.
 - Г. Является монотонной.
- **18.** Найдите область определения функции $y = \frac{\sqrt{x-5}}{8-x}$.

A.
$$[5;+\infty)$$
 . B. $[5;8) \cup [8;+\infty]$. B. $[5;8)$. Γ . $[-\infty;+\infty]$

- **19.** Найдите наименьшее и наибольшее значения функции $y=(x+8)^2-5$
 - А. Наименьшее значение -5, наибольшее значение 8.
 - Б. Наименьшее значение -5, наибольшее значение не существует.
 - В. Наименьшее значение не существует, наибольшее значение 8.
 - Г. Наименьшее значение -8, наибольшее значение -5.
- **20.** При каких значениях аргумента функция y=(x-5)(x+3)принимает положительные

значения?
A.
$$(-\infty; -3) \cup (5; +\infty)$$
 . B. $(-\infty; -5) \cup (3; +\infty)$. B. $y = \sqrt{\frac{x-2}{10x-x^2}}$. 1. $(-5; 3)$. 1. $(-5; 3)$. 1. $(-5; 3)$. 21. Найдите область определения функции $(-\infty; -1) \cup (2; -10)$.

- - A. $(0;2]\cup(10;+\infty)$ B. $(-\infty;0]\cup(2;10)$

B.
$$(-\infty;0)\cup[2;10)$$
 Γ . $(-\infty;0)\cup[2;10)$ $b_{npos}[x_0]=\lim_{\lambda\to x_0}i\lambda i$ $b_{npos}[x_0]=\lim_{\lambda\to x_0}i\lambda i$

$$\lim \frac{x^2-8x}{x^2}$$

- **23.** Вычислить предел: $x \to 8$ $x^2 64$. A. 0. Б. ∞ . В. 0,5. Г. 2.
- **24.** *Решить неравенство*: $x^2 14x + 49 > 0$

А. Нет решений. Б.
$$(-\infty; +\infty)$$
 . В. $x=7$. Г. $(-\infty; 7) \cup (7; +\infty)$

$$f(x) = \frac{x - x - 2}{x - 2}$$
 . Какое из перечисленных утверждений верно?

A. x=2 — точка устранимого Б. x=2 — точка разрыва вторазрыва. рого рода.

В. В точке x=2 функция непре- Γ . x=2 — точка разрыва перрывна вого рода.

Тест 2. Пределы и непрерывность функций (демонстрационный вариант) Даны пределы:

$\lim_{x \to 5} \frac{x^2 - 25}{x - 5}$	$\lim_{x \to 5} \frac{x^2 - 25}{x - 5}$	$\lim_{x \to 3} \frac{x+3}{x^2+9}$	$\lim_{x \to 0} \frac{x^2 - 3x}{x^2 + 9x}$	$ \lim_{x \to 0} \left(1 + \frac{1}{2x} \right)^{\frac{1}{2x}} $	$ \lim_{x \to 0} (1+2x)^{2x} $
7. $\lim_{x \to 0} \frac{tg \ 20 x}{5 x}$	$\lim_{x \to 0} \sin x$	9. $\lim_{x \to 0} \frac{\cos 7x}{14x}$	$\lim_{x \to 0} \frac{\sin 5x}{3x}$	$\lim_{x \to 0} (1+2x)^{\frac{1}{2x}}$	$\lim_{x \to 0} \left(1 + \frac{1}{2x} \right)^{2x}$
$\lim_{x \to \infty} \frac{x^3 + 3x}{x^2 + 9}$	$\lim_{x \to \infty} \frac{x^2 - 2x}{x^2 + 9x}$	$\lim_{x \to \infty} \frac{x^3 + 3x}{2x^3 + 9}$	16. $\lim_{x \to 0} \frac{x^3 + 3x}{2x^3 + 9x^2}$	17. $\lim_{x \to 0} \frac{x^3 + 3x}{2x^3 + 9}$	$\lim_{18. x \to \infty} \frac{1}{\cos x}$

1. В каких из этих пределов нужно раскрыть неопределенность $\frac{0}{0}$?

В каких из этих пределов нужно раскрыть неопределенность
 ³

 ?

- **3.** В каких из этих пределов нужно раскрыть неопределенность 1^{∞} ?
- 4. В каких из этих пределов нет неопределенности?

5. При вычислении каких из этих пределов можно использовать первый замечательный предел $\lim_{t \to \infty} \frac{\sin t}{t} = 1$

6. При вычислении каких из этих пределов можно использовать второй замечательный предел

$$\lim_{t \to \infty} \left(1 + \frac{1}{t} \right)^{\infty} = e$$

- 7. При вычислении каких из этих пределов можно использовать правило Лопиталя?
- 8. Какие из этих пределов являются конечными?
- 9. Какие из этих пределов являются бесконечными?
- 10. Какие из этих пределов не определены?

$$\lim_{\lambda \to x_0} i i f(x) = 3i \qquad \lim_{\lambda \to x_0} i i f(x) = 3i$$

- **11.** Известно, что χ_{ij}^{i} , χ_{ij}^{i} . Какие из утверждений являются истинными?
- 11-1. Точка x_0 является точкой устранимого разрыва данной функции.
- 11-2. Точка x_0 может быть точкой устранимого разрыва данной функции.
- 11-3. В точке x_0 данная функция является непрерывной.
- 11-4. В точке x_0 данная функция может быть непрерывной.
- 11-5. Точка x_0 является точкой разрыва первого рода данной функции.

$$\lim_{\delta x \to x_0} \frac{\delta \delta f}{\delta \delta} [x] = 3\delta \qquad \lim_{\delta x \to x_0} \frac{\delta \delta f}{\delta \delta} [x] = 5\delta$$

- **12.** Известно, что $x_{ij}^{x_{ij}}$, $x_{ij}^{x_{ij}}$. Какие из утверждений являются истинными?
- 12-1. Точка x_0 является точкой разрыва первого рода данной функции.
- 12-2. Точка x_0 является точкой разрыва второго рода данной функции.
- 12-3. Точка x_0 может быть точкой разрыва первого рода данной функции.
- 12-4. Точка x_0 может быть точкой разрыва второго рода данной функции.
- 12-5. В точке x_0 данная функция может быть непрерывной.

$$\lim_{\lambda \to x_0} \frac{1}{\delta i} f(x) = \infty \delta \qquad \lim_{\lambda \to x_0} \frac{1}{\delta i} f(x) = 5 \delta$$

- **13.** Известно, что $\mathbf{x}^{\kappa_{\mathbf{x}_0}^{i}}$, $\mathbf{x}^{\kappa_{\mathbf{x}_0}^{i}}$. Какие из утверждений являются истинными?
- 13-1. Точка x_0 является точкой разрыва первого рода данной функции.
- 13-2. Точка x_0 является точкой разрыва второго рода данной функции.
- 13-3. Точка x_0 может быть точкой разрыва первого рода данной функции.
- 13-4. Точка x_0 может быть точкой разрыва второго рода данной функции.
- 13-5. В точке x_0 данная функция может быть непрерывной.
- **14.** Дана функция $y = \frac{x^2 + 1}{x + 5}$. Какие из утверждений являются истинными?
- 14-1. В точке x=5 данная функция непрерывна.
- 14-2. Точка x=5 является точкой устранимого разрыва данной функции.
- 14-3. Точка x=5 является точкой разрыва первого рода данной функции.
- 14-3. Точка x=5 является точкой разрыва второго рода данной функции.
- 15. Дана функция $y = \frac{x^2 4}{x 2}$. Какие из утверждений являются истинными?
- 15-1. В точке x=2 данная функция непрерывна.
- 15-2. Точка x=2 является точкой устранимого разрыва данной функции...
- 15-3. Точка x=2 является разрыва первого рода данной функции.
- 15-4. Точка x=2 является точкой разрыва второго рода данной функции.
- 16. Дана функция $y = \frac{x}{x-3}$. Какие из утверждений являются истинными?
- 16-1. В точке x=3 данная функция непрерывна.
- 16-2. Точка x=3 является точкой устранимого разрыва данной функции...
- 16-3. Точка x=3 является разрыва первого рода данной функции.
- 16-4. Точка x=3 является точкой разрыва второго рода данной функции.

- **17.** Дана функция $y=tg \ x$. Какие из утверждений являются истинными?
- $x = \frac{\pi}{2}$ данная функция непрерывна.
- $x = \frac{\pi}{2}$ 17-2. Точка является точкой устранимого разрыва данной функции.
- $x = \frac{\pi}{2}$ 17-3. Точка является разрыва первого рода данной функции.
- $x = \frac{x}{2}$ 17-4. Точка $x = \frac{x}{2}$ является точкой разрыва второго рода данной функции.
- **18*.** Дана функция y=[x] . Какие из утверждений являются истинными?
- 18-1. В точке x=1 данная функция непрерывна.
- 18-2. Точка x=1 является точкой устранимого разрыва данной функции..
- 18-3. Точка x=1 является разрыва первого рода данной функции.
- 18-4. Точка x=1 является точкой разрыва второго рода данной функции.

Замечание. $y=|x|=E(x)=\inf(x)$ (читается: антье́ от икс — целая часть числа x) — наибольшее целое число, не превосходящее числа x. Примеры: $\begin{bmatrix} 0,56 \end{bmatrix} = 0$, $\begin{bmatrix} 1,2 \end{bmatrix} = 1$, $\begin{bmatrix} -0,132 \end{bmatrix} = -1$.

Каждый вариант теста содержит два из вопросов 1-10 и один из вопросов 11-17.

Время выполнения теста 15 минут.

Оценка	Критерии оценивания	
Отлично	Даны верные полные ответы на все три вопроса	
Хорошо	Дан верный ответ на третий вопрос и полный верный ответ хотя бы на один из первых двух вопросов	
Удовлетворительно	Дан верный полный ответ хотя бы на один из трех вопросов	
Неудовлетворительно	В остальных случаях	

Тест 3. Производная и ее применение

Вариант 1

- 1. Запишите символически определение производной функции f(x) в данной точке X_0 .
- 2. Допишите левую часть равенства так, чтобы получилось верное утверждение: ... = u'v+uv'
- 3. Найдите величину угла между осью абсцисс и касательной к кривой y=f(x) в ее точке с абсциссой x_0 , если $f'(x_0)=\sqrt{3}$
- 4. Допишите недостающие слова так, чтобы получилось верное утверждение: если f(x) = f(x) точка максимума функции $f'(x_0) = f(x_0)$ существует, то $f'(x_0) = \dots$
- 5. Постройте схематически график функции

Вариант 2

- 1. Запишите символически правило дифференцирования сложной функции.
- 2. Допишите левую часть равенства так, чтобы получилось верное утверждение: $...=f^{'}(x_{0})\cdot dx$
- 3. Найдите величину угла между осью абсцисс и касательной к кривой y=f(x) в ее точке с абсциссой x_0 , если $f'(x_0)=-\sqrt{3}$
- 4. Допишите недостающие слова так, чтобы получилось верное утверждение: если f'(x) > 0 на данном промежутке, то функция f(x) ... на этом промежутке.
- 5. Постройте схематически график функции f(x) в окрестности точки x_0 , если из-

 $f^{(\chi)}$ в окрестности точки χ_0 , если известно, что $f^{'}(\chi_0) > 0$, $f^{''}(\chi_0) > 0$.

Вариант 3

- 1. Запишите символически правило дифференцирования произведения двух функций.
- 2. Допишите левую часть равенства так, чтобы получилось верное утверждение: $\ldots = \lim_{x\to x_0} \frac{f(x) f(x_0)}{x x_0}$
- 3. Найдите величину угла между осью абсцисс и касательной к кривой y=f(x) в ее точке с абсциссой x_0 , если $f'(x_0)=1$
- 4. Допишите недостающие слова так, чтобы получилось верное утверждение: если $f^{''}(x)>0$ на данном промежутке, то функция $f^{(x)}$... на этом промежутке.
- 5. Постройте схематически график функции f(x) в окрестности точки x_0 , если известно, что $f'(x_0) = 0$, $f''(x_0) > 0$.

Вариант 5

- 1. Запишите символически правило дифференцирования частного двух функций.
- 2. Допишите левую часть равенства так, чтобы получилось справедливое утверждение: ... = S''(t)
- 3. Найдите величину угла между осью абсцисс и касательной к кривой y=f(x) в ее точке с абсциссой x_0 , если $f'(x_0)=\frac{\sqrt{3}}{3}$
- 4. Допишите недостающие слова так, чтобы получилось верное утверждение: если $f^{'}(x)$ <0 на данном промежутке, то функция $f^{(x)}$... на этом промежутке.
- 5. Постройте схематически график функции f(x) в окрестности точки x_0 , если известно, что $f'(x_0) < 0$, $f''(x_0) < 0$.

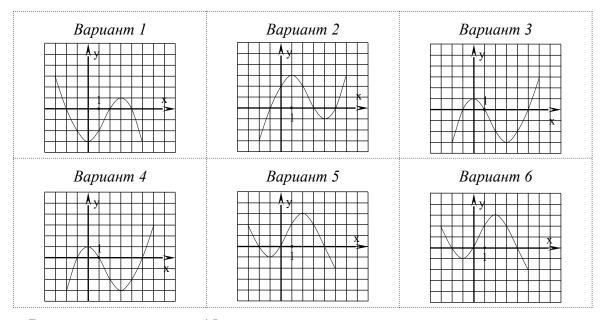
BECTHO, 4TO $f'(x_0) < 0$, $f''(x_0) > 0$

Вариант 4

- 1. Запишите символически определение производной функции f(x) в произвольной точке x .
- 2. Допишите левую часть равенства так, чтобы получилось справедливое утверждение: ... = S'[t]
- 3. Найдите величину угла между осью абсцисс и касательной к кривой y=f(x) в ее точке с абсциссой x_0 , если $f'(x_0)=-\frac{\sqrt{3}}{3}$
- 4. Допишите недостающие слова так, чтобы получилось верное утверждение: если x_0 точка минимума функции и $f^{'}(x_0)$ существует, то $f^{'}(x_0)$...
- 5. Постройте схематически график функции f(x) в окрестности точки x_0 , если известно, что $f'(x_0) > 0$, $f''(x_0) < 0$.

Вариант 6

- 1. Запишите символически правило дифференцирования суммы двух функций.
- 2. Допишите левую часть равенства так, чтобы получилось справедливое утверждение: $\dots = \frac{u^{'}v - u^{'}v^{'}}{v^{2}}$
- 3. Найдите величину угла между осью абсцисс и касательной к кривой y=f(x) в ее точке с абсциссой x_0 , если $f'(x_0)=-1$
- 4. Допишите недостающие слова так, чтобы получилось верное утверждение: если $f^{''}(x) < 0$ на данном промежутке, то функция f(x) ... на этом промежутке.


Время выполнения теста 15 минут.

Оценка	Критерии оценивания	
Отлично	Даны верные ответы на все 5 вопросов	
Хорошо	Даны верные ответы на 4 вопроса	
<i>Удовлетворительно</i>	Даны верные ответы на 3 вопроса	
Неудовлетворительно	В остальных случаях	

Тестовое задание 4. Исследование функции с помощью производных

Дан график функции y=f'(x) . Найдите:

- 1. Интервалы непрерывности и точки разрыва функции f(x) .
- 2. Интервалы возрастания и убывания функции f(x) .
- 3. Точки минимума и точки максимума функции f(x) .
- 4. Интервалы выпуклости и вогнутости графика функции f(x) .
- 5. Абсциссы точек перегиба графика функции f(x) .

Время выполнения теста 15 минут.

Оценка	Критерии оценивания	
Отлично	Даны верные ответы на все 5 вопросов	
Хорошо	Даны верные ответы на 4 вопроса	
<i>Удовлетворительно</i>	Даны верные ответы на 3 вопроса	
Неудовлетворительно	В остальных случаях	

Тест 5. Неопределенный и определенный интегралы, их свойства

Вариант 1

- 1 3. Дописать недостающие слова так, чтобы получилось верное утверждение
- 1. Неопределенным интегралом от данной функции на данном интервале называется ...
 - а) ... функция, производная которой равна данной функции.
 - б) ... множество всех первообразных данной функции на данном интервале.
 - в) ... предел последовательности интегральных сумм, когда число разбиений данного промежутка стремится к бесконечности.
 - г) ... предел отношения приращения функции к соответствующему приращению ее аргумента, когда приращение аргумента стремится к нулю.
 - д) Свой вариант ответа.
- 2. Первообразная по своей математической природе это ...
 - а) ... функция.
 - б) ... бесконечное множество функций.
 - в) ... число.

- г) ... некоторое множество чисел.
- д) Свой вариант ответа.
- 3. Если существует определенный интеграл от данной функции на данном отрезке, то функция называется ... на этом отрезке.
- **4.** Сформулировать теорему о вычислении определенного интеграла по формуле Ньютона Лейбница.
- 5. Дописать свойство интеграла:

$\left| \int f(x) \, dx \right| = \dots$ **Bapuahm 2**

- 1-3. Дописать недостающие слова так, чтобы получилось верное утверждение
- 1. Первообразной данной функции на данном интервале называется ...
 - а) ... функция, производная которой равна данной функции.
 - б) ... множество всех первообразных данной функции на данном интервале.
 - в) ... предел последовательности интегральных сумм, когда число разбиений данного промежутка стремится к бесконечности.
 - г) ... предел отношения приращения функции к соответствующему приращению ее аргумента, когда приращение аргумента стремится к нулю.
 - д) Свой вариант ответа.
- **2.** Неопределенный интеграл по своей математической природе это ...
 - а) ... функция.
 - б) ... бесконечное множество функций.
 - в) ... число.
 - г) ... некоторое множество чисел.
 - д) Свой вариант ответа.
- 3. Сумма вида $S_n = f(x_1) \cdot \Delta x_1 + f(x_2) \cdot \Delta x_2 + ... + f(x_n) \cdot \Delta x_n$ называется ...
- 4. Сформулировать теорему о геометрическом смысле определенного интеграла.
- **5.** Дописать свойство интеграла: $\int f'(x) dx = \dots$

Вариант 3

- 1 3. Дописать недостающие слова так, чтобы получилось верное утверждение
- 1. Определенным интегралом от данной функции на данном отрезке называется ...
 - а) ... функция, производная которой равна данной функции.
 - б) ... множество всех первообразных данной функции на данном интервале.
 - в) ... предел последовательности интегральных сумм, когда число разбиений данного промежутка стремится к бесконечности.
 - г) ... предел отношения приращения функции к соответствующему приращению ее аргумента, когда приращение аргумента стремится к нулю.
 - д) Свой вариант ответа.
- 2. Производная по своей математической природе это ...
 - а) ... функция.
 - б) ... бесконечное множество функций.
 - в) ... число.
 - г) ... некоторое множество чисел.
 - д) Свой вариант ответа.
- **3.** Если функция f(x) непрерывна и неотрицательная на отрезке [a;b] , то фигура, ограниченная линиями y=f(x), y=0, x=a, x=b , называется ...
- 4. Сформулировать теорему о множестве первообразных данной функции.
- **5.** Дописать свойство интеграла: $\int c \cdot f(x) dx = \dots$

Вариант 4

1 – 3. Дописать недостающие слова так, чтобы получилось верное утверждение

- **1.** Фигура, ограниченная линиями x=a, x=b, y=0, y=f(x), является криволинейной трапецией, если ...
 - а) ... на отрезке [a;b] функция f(x) непрерывна.
 - б) ... на отрезке [a;b] функция f(x) непрерывна и $f(x) \neq 0$
 - в) ... на отрезке [a;b] функция f(x) непрерывна и $f(x) \ge 0$.
 - г) ... на отрезке [a;b] функция f(x) непрерывна и $f(x) \le 0$
 - д) Свой вариант ответа
- 2. Определенный интеграл по своей математической природе это ...
 - а) ... функция.
 - б) ... бесконечное множество функций.
 - в) ... число.
 - г) ... некоторое множество чисел.
 - д) Свой вариант ответа.
- 3. Если число n разбиений отрезка a;b стремится к бесконечности так, что длины всех частичных отрезков стремятся к нулю, и существует предел $\lim_{n\to\infty} \left(f\left(x_1\right)\cdot \Delta x_1 + f\left(x_2\right)\cdot \Delta x_2 + \ldots + f\left(x_n\right)\cdot \Delta x_n\right)$, то этот предел называется ...
- **4.** Сформулировать теорему о достаточном условии интегрируемости функции на данном промежутке.
- **5.** Дописать свойство интеграла: $\int f_1(x) dx + \int f_2(x) dx = ...$

Время выполнения теста 15 минут.

Оценка	Критерии оценивания	
Отлично	Даны верные ответы на все 5 вопросов	
Хорошо	Даны верные ответы на 4 вопроса	
<i>Удовлетворительно</i>	Даны верные ответы на 3 вопроса	
Неудовлетворительно	В остальных случаях	

3.2 Промежуточная аттестация

Учебным планом специальности 49.02.01 Физическая культура по учебному предмету предусмотрен экзамен в 1 и 2 семестрах.

Перечень вопросов к экзамену за первый семестр

Теоретические вопросы

- 1. Натуральные числа, целые числа, рациональные и иррациональные числа, действительные числа (определения и примеры).
- 2. Определение комплексного числа. Мнимая единица. Действительная и мнимая части комплексного числа. Сопряженные комплексные числа. Примеры.
- 3. Решение квадратного уравнения с действительными коэффициентами и отрицательным дискриминантом на множестве комплексных чисел
- 4. Причины использования приближенных значений величин. Точное и приближенное значение величины, абсолютная и относительная погрешности приближений.
- 5. Вычисление абсолютной и относительной погрешностей суммы и разности приближенных величин.
- 6. Вычисление абсолютной и относительной погрешностей произведения и частного приближенных величин.
- 7. Верные цифры приближения. Нахождение верных цифр суммы и разности приближенных величин.
- 8. Верные цифры приближения. Значащие цифры приближения. Нахождение верных цифр произведения и частного приближенных величин.

- Уравнение с одной переменной; корень уравнения; равносильные уравнения (определения и примеры). Теоремы о равносильности уравнений.
- Неравенство с одной переменной; решение (как результат) неравенства; равносильные неравенства (определения и примеры). Теоремы о равносильности неравенств.
- Понятие о системе уравнений с одной или несколькими переменными. Решение (как результат) системы уравнений с двумя переменными; равносильные системы (определения и примеры). Теоремы о равносильности систем.

 $[a_1 x + b_1 y = c_1, bbb]$ двух линейных уравнений с 12. Графическое решение системы

- двумя неизвестными. Рассмотреть три возможных случая.
- Изображение на числовой оси множества решений системы линейных неравенств с одной переменной (рассмотреть все возможные случаи для системы двух неравенств).
- Изображение на координатной плоскости множества решений линейного нера-14. венства с двумя переменными. Пример.
 - 15. Числовая функция. Способы задания функции. Примеры.
- 16. Числовая функция. Область определения и множество значений функции. Естественная область определения функции, заданной аналитически. Примеры.
- График функции. Нахождение значения функции для данного значения 17. аргумента по графику. Примеры.
- Возрастающая функция, убывающая функция, постоянная функция, монотон-18. ная функция (определения и примеры).
- Четная функция, нечетная функция (определения, примеры). Свойства графи-19. ков четной и нечетной функций.
- Ограниченная функция (определение, примеры). Свойства графика ограничен-20. ной функции.
- 21. Периодическая функция (определение, примеры). Свойства графика периодической функции.
- Функция, обратная данной функции. Условие обратимости функции. Свойство 22. графиков взаимно обратных функций.
 - 23. Примеры функциональных зависимостей в реальных процессах и явлениях.
 - 24. Степень с натуральным показателем, ее свойства.
 - 25. Корень натуральной степени, его свойства.
 - Степень с рациональным показателем, ее свойства. 26.
 - 27. Степень с действительным показателем, ее свойства.
- 28. Определение логарифма. Основное логарифмическое тождество. Десятичный и натуральный логарифмы.
 - 29. Теорема о логарифме произведения.
 - 30. Теорема о логарифме частного.
 - 31. Теорема о логарифме степени.
 - 32. Формула перехода от одного основания логарифма к другому.
 - Логарифмирование и потенцирование. Примеры. 33.
 - Степенная функция $y=x^p$, ее свойства и график при 34.
 - Степенная функция $y=x^p$, ее свойства и график при 035.
 - Степенная функция $y=x^p$, ее свойства и график при p>1. 36.
 - Показательная функция $y=a^x$, ее свойства и график при 0 < a < 1. 37.
 - Показательная функция $y = a^x$, ее свойства и график при a > 1. 38.
 - Логарифмическая функция $y = \log_a x$, ее свойства и график при 0 < a < 1. 39.
 - $y = \log_a x$, ее свойства и график при a > 1 . Логарифмическая функция 40.

- 41. Угол в тригонометрии. Градусная и радианная меры угла, зависимость между ними.
- 42. Определения тригонометрических функций. Соотношения между тригонометрическими функциями одного и того же аргумента.
 - 43. Четность и нечетность тригонометрических функций.
 - 44. Косинус суммы и косинус разности двух аргументов.
 - 45. Синус суммы и синус разности двух аргументов.
 - 46. Тангенс суммы и тангенс разности двух аргументов.
 - 47. Тригонометрические функции двойного аргумента.
 - 48. Тригонометрические функции половинного аргумента.
 - 49. Преобразование суммы и разности синусов в произведение.
 - 50. Преобразование суммы и разности косинусов в произведение.
 - 51. Преобразование суммы и разности тангенсов в произведение.
- 52. Преобразование произведения тригонометрических функций в сумму или разность.
 - 53. Формулы приведения для аргумента $\frac{\pi}{2} \alpha$
 - 54. Формулы приведения для аргумента $\frac{\pi}{2}$ + α
 - 55. Формулы приведения для аргумента $\pi \alpha$.
 - 56. Формулы приведения для аргумента $\pi + \alpha$
 - 57. Формулы приведения для аргумента $\frac{3\pi}{2} \alpha$
 - 58. Формулы приведения для аргумента $\frac{3\pi}{2} + \alpha$
 - 59. Формулы приведения для аргумента $2\pi \alpha$
 - 60. Свойства и график функции $y = \sin x$
 - 61. Свойства и график функции $y = \cos x$
 - 62. Свойства и график функции y=tgx
 - 63. Решение уравнения $\sin x = a$. Понятие об арксинусе данного числа.
 - 64. Решение уравнения $\cos x = a$. Понятие об арккосинусе данного числа.
 - 65. Решение уравнения tgx=a . Понятие об арктангенсе данного числа.
 - 66. Функция $y = \arcsin x$, ее свойства и график.
 - 67. Функция $y = \arccos x$, ее свойства и график.
 - 68. Функция y = arctgx, ее свойства и график.

Практические задания

1. Вычислить: 2,5·(1,25-1,64:0,8)

$$(3,05-2,125\cdot3,2):\frac{5}{6}$$

- 2. Вычислить: 6
- 3. Вычислить: (15,(6)-7,(3)):4,1(6)
- 4. Вычислить наиболее рациональным способом: $\frac{7,53^3-2,47^3}{5,06} + 7,53 \cdot 2,47$
- 5. Вычислить: $\left[5^{\sqrt{13}-4}\right]^{\sqrt{13}+4}$.
- 6. Вычислить: $4^{\sqrt[3]{11}}$: $2^{\sqrt[3]{88}+3}$
- 7. Вычислить: $3^{4-2\sqrt{6}} \cdot 9^{\sqrt{6}-1}$
- 8. Вычислить: $\log_2 32\sqrt{2}$.

```
\log_8 \log_5 25
9.
          Вычислить:
                                6^{2 + \log_6 3}
10.
          Вычислить:
11.
          Вычислить:
                                25^{\frac{1}{2} + \log_{25} 11}
12.
          Вычислить:
                                8^{\frac{1}{3} + \log_8 5}
13.
          Вычислить:
                                \log_6 8 + \log_6 27
14.
          Вычислить:
                                \log_7 98 - \log_7 2
15.
          Вычислить:
                                2 \lg 5 + \frac{1}{2} \lg 16
16.
          Вычислить:
17.
          Вычислить:
                               \log_a x^3 \sqrt{y} , если \log_a x = 1,3 , \log_a y = 3,4 \log_a \frac{\sqrt[3]{x}}{y^2} , если \log_a x = 2,4 , \log_a y = 0,7 .
          Вычислить:
18.
19.
          Вычислить:
                                               \lg x = \frac{1}{3} \lg 8 + 2 \lg 3 - 3 \lg 5
          Вычислить: х , если
20.
                                                \ln x = \frac{1}{5} \ln 32 - 2 \ln 5
21.
          Вычислить: \chi , если
                                \sin 12^{\circ} \cdot \cos 33^{\circ} + \cos 12^{\circ} \cdot \sin 33^{\circ}
22.
          Вычислить:
                                cos 52 °·cos 22 °+cos 52 °·cos 22 °
23.
          Вычислить:
                                tg 38°+tg 7°
1−tg 38°·tg 7°
24.
          Вычислить:
                               sin 15°
25.
          Вычислить:
                               tg 22°30
26.
          Вычислить:
                               \cos^2 15^\circ - \sin^2 15^\circ
27.
          Вычислить:
                                \sin 105^{\circ}
28.
          Вычислить:
                                \sin 75^{\circ} \cdot \sin 15^{\circ}
29.
          Вычислить:
                                \sin 780^{\circ}
30.
          Вычислить:
                                cos 210°
31.
          Вычислить:
                              \sin \alpha , если \cos \alpha = -0.6 и \frac{\pi}{2} < \alpha < \pi tg \alpha , если \cos \alpha = \frac{5}{13} и 0 < \alpha < \frac{\pi}{2}
32.
          Вычислить
33.
          Вычислить
                                arctg(-\sqrt{3}) + arcsin 0.5.
34.
          Вычислить:
```

 $4^{7x-3}=8$ Решить уравнение: 35.

 $5^{2x+3} = 25\sqrt{5}$ 36. Решить уравнение:

37. Решить уравнение:

 $3^{x^2-5x} = \frac{1}{81} \cdot 2^{5x} \cdot 4^{2x-1} \ge 8^{1-2x}$ 38. Решить неравенство:

 $5^{7x} \cdot 3^{7x} = 15^{x^2}$ Решить уравнение: 39.

```
3^{x+2} - 5 \cdot 3^x < 108
40.
        Решить неравенство:
```

41. Решить уравнение:
$$2^{5x} + 7 \cdot 2^{5x-1} = 22$$

42. Решить уравнение:
$$3^{2x} - 10 \cdot 3^x + 9 = 0$$
.

43. Решить уравнение:
$$\log_3(7x-10)=4$$

44. Решить уравнение:
$$\log_{x-5} 36 = 2$$

45. Решить уравнение:
$$\log_x(5x-6)=2$$

46. Решить уравнение:
$$\log_2 x + \log_2 (x-7) = 3$$

47. Решить уравнение:
$$\log_5(29 x-1) - \log_5(x+3) = 2$$

48. Решить уравнение:
$$\log_2 x + \log_4 x = 6$$

49. Решить уравнение:
$$\log_{3^2} x - 3\log_3 x - 4 = 0$$

50. Решить уравнение:
$$\log_4 x + \log_x 4 = 2,5$$

51. Решить неравенство:
$$\log_2(5x-8) > \log_2(24-3x)$$

52. Решить неравенство:
$$\log_{0,5}(2x+8) \ge \log_{0,5}6$$

53. Решить уравнение:
$$\sqrt{2x-5} = 3$$
 .

54. Решить уравнение:
$$\sqrt[3]{2x-1} = -2$$
.

55. Решить уравнение:
$$x - 2\sqrt{x} - 3 = 0$$

56. Решить уравнение:
$$\sqrt{2x+1+x}=7$$

57. Решить уравнение:
$$\sqrt[3]{6+\sqrt{x-5}}=2$$

58. Решить неравенство:
$$\sqrt{4x-1}2 \le 6$$

59. Решить неравенство:
$$\sqrt{3}x + 6 > -5$$

59. Решить неравенство:
$$\sqrt{3x+6} < \sqrt{5}x-20$$
60. Решить неравенство: $\sqrt{3x+6} < \sqrt{5}x-20$

$$\cos^2 3x - \sin^2 3x = \frac{1}{2}$$
61. Решить уравнение:

$$\sin x \cos 2x + \cos x \sin 2x = \frac{\sqrt{2}}{2}$$
62. Решить уравнение:

$$\cos x \cdot \cos \frac{\pi}{8} + \sin x \cdot \sin \frac{\pi}{8} = 0$$
63. Решить уравнение:

64. Решить уравнение:
$$2\cos^2 x - 3\cos x + 1 = 0$$

65. Решить уравнение:
$$tg^2x - 4tg \ x - 5 = 0$$

66. Решить уравнение:
$$\sin^2 x - 4 \sin x + 3 = 0$$

67. Решить уравнение:
$$tg x - 3 ctg x - 2 = 0$$

68. Найти область определения функции
$$y = \sqrt[3]{3x+6}$$

69. Найти область определения функции
$$y = \frac{3x}{x^2 - 16}$$

70. Найти область определения функции
$$y = \sqrt{14 - 7}x$$

71. Найти область определения функции
$$y = \sqrt{x^2 - 3x}$$

72. Найти область определения функции
$$y = \lg(4 - x^2)$$

73. Найти область определения функции
$$y = \log_3(x-5) + \log_5(8-x)$$

```
v = x^2 - 12x + 40
74.
       Найти множество значений функции
                                               y=6\cos x+2
75.
       Найти множество значений функции
                                               y=2^{\sin x}
       Найти множество значений функции
76.
                                y=3x^2-5\cos x+7
       Доказать, что функция
                                                     является четной.
77.
                                y=9\sin x+\frac{7}{}
78.
       Доказать, что функция
                                                является нечетной.
                                                     y = x^2 + 6 \sin x ?
79.
       Является ли четной или нечетной функция
                                 y=2\sin x-5
80.
       Доказать, что функция
                                                является ограниченной.
                                              y=2 arcta x+5
81.
       Является ли ограниченной функция
                                 y=3\sin\frac{5x}{2}
82.
       Найти период функции
                                 y=5^{\cos x}
83.
       Доказать, что функция
                                           является периодической.
                                      y = \sqrt{x - 5 + 2}
84.
       Построить график функции
                                      y = \log_{0.5} |x|
85.
       Построить график функции
                                      y = |\log_2 x|
86.
       Построить график функции
                                      y = |\cos x|
87.
       Построить график функции
                                      y = \sin |x|
88.
       Построить график функции
                                      y = \sin 2x
89.
       Построить график функции
                                      y=3\sin x
90.
       Построить график функции
                                      v=3\sin 2x
91.
       Построить график функции
92.
       Построить график функции
                                           2^{x} \ge 10 - x
93.
       Решить графически неравенство:
                                           \sqrt{x} \ge 0.5x
94.
       Решить графически неравенство:
                                          \log_2 x \le 6 - x
95.
       Решить графически неравенство:
                                          \sin x > \frac{\sqrt{3}}{2}
96.
       Решить графически неравенство
97.
       Решить графически неравенство
                                          tgx \ge -\sqrt{3}
98.
       Решить графически неравенство
                                                                         [0;2\pi]
                                           \sin x \le \cos x на промежутке
99.
       Решить графически неравенство
                                           x^2 - 6x + 11 \ge 0
       Решить графически неравенство
100.
                                           x^2 + 8x + 16 \le 0
101.
       Решить графически неравенство
102.
       Решить графически систему уравнений:
       Решить графически систему уравнений:
103.
```

$$6x-4y=10, 000$$

104. Решить графически систему уравнений:

105. Изобразить на координатной плоскости множество решений системы нера-

венств:

106. Решить уравнение: $\frac{5x-2}{3} - \frac{x+6}{4} = \frac{1-3x}{6} - x+2$

$$\frac{3x+7}{4} - \frac{5-2x}{8} \ge 3x - \frac{4-x}{2}$$

107. Решить неравенство: 4 8 2 2

$$|x-3|^2 - |x+5|^2 \ge 2, i \ i \ i \ i \ i$$

108. Решить систему неравенств:

109. Решить методом подстановки систему уравнений: $3\chi + 4y = -14$, ...

110. Решить методом сложения систему уравнений: 4x+7y=26,

$$\left\{\frac{1}{2x-y} + \frac{2}{3x+y-1} = \frac{7}{3}, i i i i i i \right\}$$

111. Решить систему:

112. Решить на множестве комплексных чисел уравнение $z^2+121=0$

113. Решить на множестве комплексных чисел уравнение $z^2 + 6z + 25 = 0$

114. Решить неравенство $x^2-3x-10<0$ сведением к системе линейных неравенств.

115. Решить неравенство $x^3 - 5x^2 - 6x < 0$ методом интервалов.

2.2.2. Критерии оценивания

Экзаменационный билет содержит три теоретических вопроса и два практических задания, подобранные таким образом, чтобы охватить все основные разделы изучаемого курса математики.

Оценка **«отлично»** выставляется студенту, который верно в полном объёме ответил на все теоретические вопросы, верно выполнил оба практических задания билета и верно ответил на дополнительные вопросы.

Оценка **«хорошо»** выставляется студенту, который в целом верно, но не достаточно полно изложил содержание теоретических вопросов билета, в решении практических заданий билета допустил погрешности, но верно ответил на дополнительные вопросы.

Оценка **«удовлетворительно»** выставляется студенту, который изложил основные моменты из двух теоретических вопросов билета и верно решил одно из практических заданий билета или верно решил оба практических задания и в ответах на дополнительные вопросы показал знание основных положений дисциплины и умение применять их на практике.

Оценка **«неудовлетворительно»** выставляется студенту, ответ которого не соответствует изложенным выше критериям.

2.2.3. Перечень вопросов к экзамену за второй семестр

Теоретические вопросы

Алгебра

- 1. Числовые функции. Способы задания функции. Область определения и множество значений функции. График функции. Свойства функции: монотонность, четность, нечетность, ограниченность, периодичность. Промежутки возрастания и убывания функции. Точки экстремума функции. Наибольшее и наименьшее значения функции. Графическая интерпретация.
- **2.** Построение графиков функций, заданных различными способами. Простейшие преобразования графиков. Исследование свойств функции по ее графику. Примеры функциональных зависимостей в реальных процессах и явлениях.
- 3. Функция, обратная данной функции. Условие обратимости функции. Область определения и множество значений обратной функции. Графики взаимно обратных функций.
 - 4. Степенная функция, ее свойства и графики.
 - 5. Показательная функция, ее свойства и графики.
- 6. Логарифмическая функция, ее свойства и графики. Графическое решение простейших логарифмических уравнений и неравенств.
 - 7. Тригонометрические функции $\sin x$, $\cos x$, tg x, ctg x, их свойства и графики.
- 8. Обратные тригонометрические функции $arcsin\ x$, $arccos\ x$, $arctg\ x$, их свойства и графики.
- 9. Преобразования графиков: параллельный перенос, симметрия относительно осей координат и симметрия относительно начала координат, симметрия относительно прямой y = x, растяжение и сжатие вдоль осей координат.

Начала математического анализа

- 10. Числовая последовательность. Способы задания и свойства числовой последовательности.
 - 11. Предел числовой последовательности, его свойства.
 - 12. Бесконечно убывающая геометрическая прогрессия, ее сумма.
 - 13. Предел функции при $x \to x_0$, $x \to \pm \infty$. Свойства пределов.
 - 14. Непрерывность функции в точке и на промежутке. Типы точек разрыва.
 - 15. Свойства непрерывных функций.
 - 16. Нахождение вертикальных и наклонных асимптот графика функции
- 17. Определение производной. Теорема о непрерывности дифференцируемой функции.
- 18. Правила дифференцирования суммы, произведения, частного двух функций, сложной функции.
 - 19. Производные основных элементарных функций.
 - 20. Вторая производная. Физический смысл первой и второй производных.
- 21. Геометрический смысл производной. Уравнение касательной к графику функции.
 - 22. Использование производной для исследования функции на монотонность.
 - 23. Использование производной для исследования функции на экстремум.
- 24. Использование производной для исследования функции на выпуклость и перегиб графика.
- 25. Использование производной для нахождения наилучшего решения в прикладных задачах.
- 26. Первообразная. Неопределенный интеграл, его свойства. Формулы интегрирования
- 27. Определенный интеграл, его свойства. Вычисление определенного интеграла по формуле Ньютона-Лейбница

- 28. Геометрический смысл определенного интеграла. Вычисление площади криволинейной трапеции.
 - 29. Применение интегралов для решения физических задач.

Практические задания (основные типы)

- $\lim_{x \to \infty} \frac{2x^3 3x}{-5x^3 + 9x^2}$ Вычислить предел: 1.
 - $\lim_{x \to 13} \frac{x^2 13x}{x^2 169}$
- Вычислить предел: 2.
 - $\lim_{x \to 0} \frac{5 x^3 3 x}{10 x^3 + 7 x^2}$
- Вычислить предел: 3.
 - $\lim_{x \to 196} \frac{x 196}{\sqrt{x} 14}$
- Вычислить предел: 4.
- $y = \frac{3\sin x}{6x + 21}$ 5. Вычислить производную функции
- $y = \frac{x^8 + 11}{\cos x}$ 6. Вычислить производную функции
- Вычислить производную функции $y=(5x-12)\cdot ctgx$ 7.
- Вычислить производную функции $y=x^3 \cdot (\ln x + 8)$ 8.
- $\int \left(5x^8 \frac{7}{2\sqrt{x}} + 6\right) dx$ 9. Вычислить интеграл:
- $\int \left(3x^5 + \frac{2}{\sin^2 x} 5\right) dx$ Вычислить интеграл: 10.
- $\int \left(\frac{1}{5}x^6 + 2\sin x + 7\right) dx$ $\int \left(9x^7 \frac{8}{x} 10\right) dx$ Вычислить интеграл: 11.
- 12. Вычислить интеграл:

Критерии оценивания ответов на вопросы

Оценка уровня подготовки					
Балл (отметка)	Результат				
5	Отлично	более 89% правильных ответов			
4	Хорошо	70%-89% правильных ответов			
3	Удовлетворительно	51%-69% правильных ответов			
2	Неудовлетворительно	менее 51% правильных ответов			