Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Пономарева Светлана Викторовна Должность: Проректор по УР и НО Дата подписания: 18.09.2023 17:34:00 Уникальный программный ключ:

bb52f959411e64617366ef2977b97e87139b1a2d

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

(ДГТУ)

АВИАЦИОННЫЙ КОЛЛЕДЖ

		УТВЕРЖДАЮ
		Директор колледжа
-		В.А. Зибров
«	»	2022 г.
		Per. №

VEDEDMETAIO

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по дисциплине ОП.03 Техническая механика основной образовательной программы по специальности СПО 15.02.08 Технология машиностроения

Лист согласования

	Фонд	оценочных	средств	ПО	специа	альности	(специально	стям)	среднего
проф	ессиональ	ного образов	вания (дал	пее -	СПО)	15.02.08	Технология	машино	остроения
разра	ботан на	основе Федер	рального г	осудар	ственно	ого образо	вательного ст	гандарта	(далее –
ΦΓΟ	C)								

Разработчик: Преподаватель	личная		<u>А. Золотухина</u> инициалы, фамилия 2022 г.	
Фонд оценочных средств рассмот общепрофессиональных дисциплин	рен и одобрен	на заседании	и цикловой комис	сии
Протокол № от «»	2022 г.			
Председатель цикловой комиссии	ичная подпись	инициалы,	фамилия	
Согласовано:		« <u> </u> » <u> </u>	2022 г.	
Рецензенты:				
Авиационный колледж ДГТУ Председа Место работы за	тель цикловой ком анимаемая должность		инициалы, фамилия	
	реподаватель нимаемая должность	инициалы,	фамилия	
ВВЕДЕН ВПЕРВЫЕ РЕДАКЦИЯ				

СОДЕРЖАНИЕ

1	ПАСПОРТ ФОНДА ОЦЕНОЧНЫХ СРЕДСТВ	4
2	КОМПЛЕКТ ФОНДА ОЦЕНОЧНЫХ СРЕДСТВ	
2.1	ЗАДАНИЯ ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ	
2.2.	ЗАДАНИЯ ДЛЯ ПРОВЕДЕНИЯ ЭКЗАМЕНА	
2.3.	КРИТЕРИИ ОЦЕНИВАНИЯ	

І. Паспорт фонда оценочных средств

1. Область применения фонда оценочных средств

Фонд оценочных средств предназначен для оценки результатов освоения дисциплины OП.03 Техническая механика.

Таблица 1

Результаты освоения (объекты оценивания)	Основные показатели оценки результата и их критерии	Тип задания; № задания	Форма аттестации (в соответствии с учебным планом)
Умение производить расчеты механических передач и простейших сборочных единиц;	Качественное выполнение лабораторных работ . Ответы на теоретические вопросы по темам дисциплины. Проведение качественных расчетов по заданной теме	Лабораторные работы. Ответы на вопросы.	Экзамен
Умение читать кинематические схемы;	Качественное выполнение лабораторных работ . Ответы на теоретические вопросы по темам дисциплины. Чтение кинематических схем и их применение	Лабораторные работы. Ответы на вопросы.	Экзамен
Умение определять напряжения в конструкционных элементах;	Качественное выполнение лабораторных работ . Ответы на теоретические вопросы по темам дисциплины. Определение напряжений в конструкционных элементах различными методами и при различных условиях нагружения.	Лабораторные работы. Ответы на вопросы.	Экзамен
Знание основ технической	Качественное выполнение	Лабораторные работы.	Экзамен

механики;	лабораторных работ . Ответы на теоретические вопросы по темам дисциплины.	Ответы на вопросы.	
Знание видов механизмов, их кинематические и динамические характеристики	Качественное выполнение лабораторных работ. Ответы на теоретические вопросы по темам дисциплины.	Лабораторные работы. Ответы на вопросы.	Экзамен
Знание методики расчета элементов конструкций на прочность, жесткость и устойчивость при различных видах деформации;	Качественное выполнение лабораторных работ. Ответы на теоретические вопросы по темам дисциплины.	Лабораторные работы. Ответы на вопросы.	Экзамен
Знание основ расчетов механических передач и простейших сборочных единиц общего назначения	Качественное выполнение лабораторных работ. Ответы на теоретические вопросы по темам дисциплины.	Лабораторные работы. Ответы на вопросы.	Экзамен

2. Фонд оценочных средств

Контроль и оценка результатов освоения учебной дисциплины осуществляется преподавателем в процессе проведения практических занятий, тестирования, а также выполнения обучающимися индивидуальных заданий.

2.1. Задания для текущего контроля с критериями оценивания

Лабораторная работа № 1. Определение равнодействующей плоской системы сходящихся сил».

Данная лабораторная работа выполняется в аудиторное время. Пример выполнения лабораторной работы представлен в лекции.

Варианты задания в. представлены в УМКД специальности 15.02.08 Технология машиностроения.

Лабораторная работа № 2. Плоская система произвольно расположенных сил. Определение реакций в опорах балочных систем».

Данная лабораторная работа выполняется в аудиторное время. Пример выполнения лабораторной работы представлен в лекции.

Варианты задания в. представлены в УМКД специальности 15.02.08 Технология машиностроения.

Лабораторная работа №3 «Определение центра тяжести».

Данная лабораторная работа выполняется в аудиторное время. Пример выполнения лабораторной работы представлен в лекции.

Варианты задания в. представлены в УМКД специальности 15.02.08 Технология машиностроения.

Лабораторная работа №4 «Кинематика точки. Простейшие движения твердого тела».

Данная лабораторная работа выполняется в аудиторное время. Пример выполнения лабораторной работы представлен в лекции.

Варианты задания в. представлены в УМКД специальности 15.02.08 Технология машиностроения.

Лабораторная работа №5 «Работа и мощность. Принцип Даламбера».

Данная лабораторная работа выполняется в аудиторное время. Пример выполнения лабораторной работы представлен в лекции.

Варианты задания в. представлены в УМКД специальности 15.02.08 Технология машиностроения.

Лабораторная работа №6 «Определение механических свойств материала».

Данная лабораторная работа выполняется в аудиторное время. Пример выполнения лабораторной работы представлен в лекции.

Варианты задания в. представлены в УМКД специальности 15.02.08 Технология машиностроения.

Лабораторная работа №7 «Расчеты на прочность при растяжении и сжатии».

Данная лабораторная работа выполняется в аудиторное время. Пример выполнения лабораторной работы представлен в лекции.

Варианты задания в. представлены в УМКД специальности 15.02.08 Технология машиностроения.

Лабораторная работа №8 «Определение модуля сдвига при кручении».

Данная лабораторная работа выполняется в аудиторное время. Пример выполнения лабораторной работы представлен в лекции.

Варианты задания в. представлены в УМКД специальности 15.02.08 Технология машиностроения.

Лабораторная работа №9 «Расчеты на прочность и жесткость при кручении».

Данная лабораторная работа выполняется в аудиторное время. Пример выполнения лабораторной работы представлен в лекции.

Варианты задания в. представлены в УМКД специальности 15.02.08 Технология машиностроения.

Лабораторная работа №10 «Расчеты на прочность при изгибе».

Данная лабораторная работа выполняется в аудиторное время. Пример выполнения лабораторной работы представлен в лекции.

Варианты задания в. представлены в УМКД специальности 15.02.08 Технология машиностроения.

Лабораторная работа №11 « Определение критической силы при расчетах на устойчивость».

Данная лабораторная работа выполняется в аудиторное время. Пример выполнения лабораторной работы представлен в лекции.

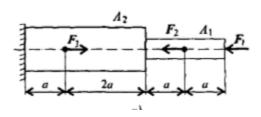
Варианты задания в. представлены в УМКД специальности 15.02.08 Технология машиностроения.

Лабораторная работа №12 «Определение параметров зубчатых колес по их замерам».

Данная лабораторная работа выполняется в аудиторное время. Пример выполнения лабораторной работы представлен в лекции.

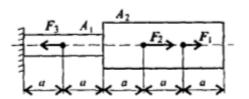
Варианты задания в. представлены в УМКД специальности 15.02.08 Технология машиностроения.

2.2. Задания для проведения экзамена.

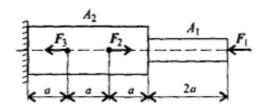

2.2.1.Перечень вопросов к экзамену

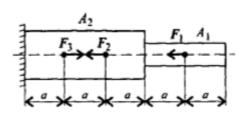
Теоретические вопросы

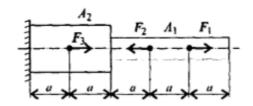
- 1. Основные понятия и аксиомы статики
- 2. Сила. Проекция силы на оси.
- 3. Плоская система сходящихся сил. Аналитический способ.
- 4. Плоская система сходящихся сил. Геометрический способ.
- 5. Пара сил и момент силы относительно точки
- 6. Плоская система произвольно расположенных сил
- 7. Пространственная система сил
- 8. Центр тяжести.
- 9. Основные понятия кинематики.
- 10. Кинематика точки.
- 11. Простейшие движения твердого тела.
- 12. Сложное движение точки.
- 13. Сложное движение твердого тела.
- 14. Основные понятия и аксиомы динамики.
- 15. Понятие о трении. Виды трения.
- 16. Движение материальной точки. Принцип Даламбера.
- 17. Работа силы при прямолинейном и криволинейном перемещениях.
- 18. Мощность и КПД.
- 19. Общие теоремы динамики.
- 20. Основы динамики системы материальных точек.
- **21.** Основные положения «Сопротивления материалов». Гипотезы и допущения. Классификация нагрузок. Формы элементов конструкции.
- **22.** Основные положения «Сопротивления материалов». Метод сечений. Напряжения нормальные и касательные.
- 23. Растяжение и сжатие. Внутренние силовые факторы. Напряжения.
- 24. Растяжение и сжатие. Продольные и поперечные деформации. Закон Гука.
- 25. Правила построения эпюр продольных сил и напряжений.
- 26. Растяжение и сжатие. Механические испытания.
- 27. Растяжение и сжатие. Расчеты на прочность и жесткость.

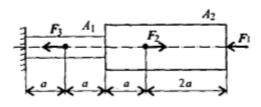

- 28. Практические расчеты срез и смятие.
- 29. Геометрические характеристики плоских сечений.
- 30. Кручение. Основные гипотезы. Внутренние силовые факторы.
- 31. Кручение. Напряжение и деформации.
- 32. Кручение. Расчеты на прочность и жесткость.
- 33. Кручение. Механические испытания.
- 34. Изгиб. Классификация. Внутренние силовые факторы при чистом изгибе.
- 35. Изгиб. Классификация. Внутренние силовые факторы при поперечном изгибе.
- 36. Правило знаков. Правила построения эпюр перерезывающих сил и изгибающих моментов.
- 37. Изгиб. Напряжение и деформации при чистом изгибе.
- 38. Изгиб. Расчеты на прочность при изгибе.
- **39.** Изгиб. Понятие о касательных напряжениях. Линейные и угловые перемещения при изгибе.
- 40. Понятие о сложном деформируемом состоянии.
- 41. Сопротивление усталости.
- 42. Устойчивость сжатых стержней.
- 43. Общие сведения о деталях машин.
- 44. Общие сведения о передачах.
- 45. Фрикционные передачи.
- 46. Ременные передачи.
- 47. Зубчатые передачи. Классификация. Материалы. Виды разрушений зубчатых колес.
- 48. Зубчатые передачи. Определение параметров зубчатых передач.
- 49. Передача винт-гайка.
- 50. Червячные передачи.
- 51. Цепные передачи.
- 52. Общие сведения о регуляторах (редукторах).
- **53.** Валы и оси.
- 54. Подшипники.
- **55.** Муфты.
- 56. Соединение деталей машин. Назначение. Неразъемные соединения.
- 57. Резьбовые соединения.
- 58. Шпоночные и шлицевые соединения.

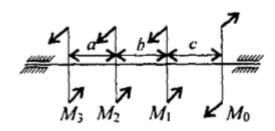
Практические задания


Задача №1


Построить эпюры продольных сил и нормальных напряжений по длине бруса. Определить перемещение свободного конца бруса. Двухступенчатый стальной брус нагружен силами F_1 =20 кH, F_2 =10 кH, F_3 =5 кH. Площади поперечных сечений A_1 =1,8 см², A_2 =3,2 см². a=0,2 м. Принять E=2*10⁵ H/мм².




Задача №2


Построить эпюры продольных сил и нормальных напряжений по длине бруса. Определить перемещение свободного конца бруса. Двухступенчатый стальной брус нагружен силами F_1 =26 кH, F_2 =20 кH, F_3 =10 кH. Площади поперечных сечений A_1 =1,6 см², A_2 =2,4 см². a=0,3 м. Принять E=2*10⁵ H/мм².

0,02рад/м, a = b = c = 1,1 м.

Задача №3

Построить эпюры продольных сил и нормальных напряжений по длине бруса. Определить перемещение свободного конца бруса. Двухступенчатый стальной брус нагружен силами F_1 =17 кH, F_2 =13 кH, F_3 =8 кH. Площади поперечных сечений A_1 =2 см², A_2 =2,5 см². a=0,5 м. Принять E=2*10⁵ H/мм².

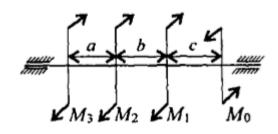
Задача №4

Построить эпюры продольных сил и нормальных напряжений по длине бруса. Определить перемещение свободного конца бруса. Двухступенчатый стальной брус нагружен силами F_1 =20 кH, F_2 =8 кH, F_3 =4 кH. Площади поперечных сечений $A_1 = 1$ см², $A_2 = 1,5$ см². a=0,4 м. Принять E=2* 10^5 H/мм².

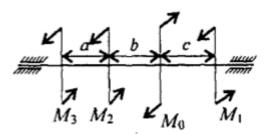
Задача №5

Построить эпюры продольных сил и нормальных напряжений по длине бруса. Определить перемещение свободного конца бруса. Двухступенчатый стальной брус нагружен силами F_1 =16 кH, F_2 =20 кH, F_3 =28 кH. Площади поперечных сечений A_1 = 1,2 см², A_2 =2,8 см². a=0,6 м. Принять E=2*10⁵ H/мм².

Задача №6


Построить эпюры продольных сил и нормальных напряжений по длине бруса. Определить перемещение свободного конца бруса. Двухступенчатый стальной брус нагружен силами F_1 =10 кH, F_2 =12 кH, F_3 =13 кH. Площади поперечных сечений A_1 = 0,9 см², A_2 = 1,7 см². a=0,4 м. Принять E=2*10⁵ H/мм².

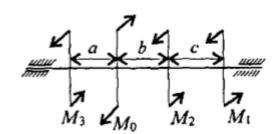
Задача №7


Для стального вала круглого поперечного сечения определить значения внешних моментов, соответствующих передаваемым мощностям $P_1 = 2,1$ κB_{T} , $P_{2}=2.6$ κB_{T} , $P_3 = 3,1$ кВт, и уравновешенный момент. Построить эпюру крутящих моментов по длине предложенной схемы. При использовать следующие данные: $\omega = 25$ рад/с, материал-сталь, $[\tau_{\kappa}] = 30$ МПа, $G=8*10^4$ МПа, $[\varphi] =$

Для стального вала круглого поперечного сечения определить значения внешних моментов, соответствующих передаваемым мощностям P₁=2,2 κB_T , $P_2 = 2.7 \ \kappa B_T$, $P_3 = 3.2 \ \kappa B_T$, и уравновешенный момент. Построить эпюру крутящих моментов по длине ДЛЯ предложенной схемы. При расчете использовать следующие данные: $\omega = 25$ рад/с,

материал-сталь, $[\tau_{\kappa}] = 30$ МПа, $G=8*10^4$ МПа, $[\varphi] = 0.02$ рад/м, $\alpha = b = c = 1.2$ м.

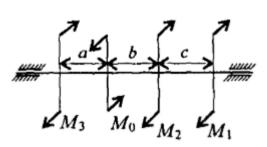
материал-сталь, $[\tau_{\kappa}] = 30$ МПа, $G=8*10^4$ МПа, $[\varphi] = 0.02$ рад/м, $\alpha = b = c = 1.3$ м.


Задача №9

Для стального вала круглого поперечного сечения определить значения внешних моментов, соответствующих передаваемым мощностям $P_1 = 2,3$ κ Вт, $P_2=2,8$ κ Вт, $P_3=3,3$ κ Вт, и уравновешенный момент. Построить эпюру крутящих моментов по длине вала для предложенной схемы. При расчете использовать следующие данные: $\omega = 25 \text{ рад/c}$,

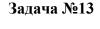
Задача №10

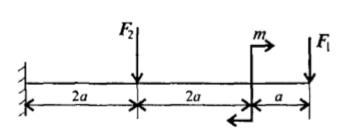
Для стального вала круглого поперечного сечения определить значения внешних моментов, соответствующих передаваемым мощностям $P_1 = 2,4$ кВт, $P_2 = 2.9 \text{ kBT},$ Р₃= 3,4 кВт, и уравновешенный момент. Построить эпюру крутящих моментов по длине вала для предложенной схемы. При расчете использовать следующие данные: $\omega = 25$ рад/с, материал-сталь, $[\tau_{\kappa}] =$


30МПа, G=8*10⁴МПа, $[\varphi] = 0,02$ рад/м, a = b = c = 1,4

Задача №11

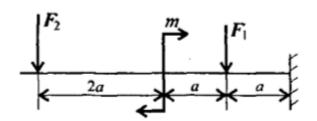
Для стального вала круглого поперечного сечения определить значения внешних моментов, соответствующих передаваемым мощностям $P_1 = 2.5$ κB_{T} , $P_{2}=3,0$ κB_{T} , $P_3 = 3.5$ кВт, и уравновешенный момент. Построить эпюру крутящих моментов по длине вала для предложенной схемы. При расчете использовать следующие данные: $\omega = 25 \text{ рад/c}$, материал-сталь, $[\tau_{\text{\tiny K}}] = 30 \text{М} \Pi \text{a}, \quad \text{G=8*} 10^4 \quad \text{M} \Pi \text{a}, \quad [\varphi] =$

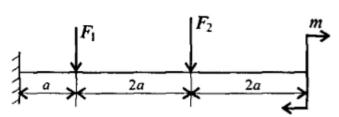

0.02рад/м, a = b = c = 1.5 м.



Задача №12

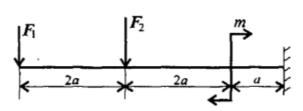
Для стального вала круглого поперечного сечения определить значения внешних моментов. соответствующих передаваемым мощностям $P_1 = 2.6$ кВт, Р₃= 3,6 кВт, и уравновешенный $P_2=3,1$ κB_T , момент. Построить эпюру крутящих моментов по длине вала для предложенной схемы. При расчете использовать следующие данные: $\omega = 25$ рад/с, материал-сталь, $[\tau_{\kappa}] =$


30МПа, G=8*10⁴МПа, $[\varphi] = 0.02$ рад/м, $\alpha = b = c = 1.6$ м.

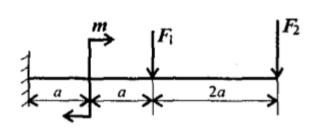


консольной балки Для нагруженной сосредоточенными силами F1=10 кH, F2=4 кН и парой сил и моментом М=8 кН*м, построить поперечных сил и изгибающих моментов. Материал –сталь, $[\sigma] = 160 \text{М} \Pi \text{а}$, $\alpha =$ 0,2 м.

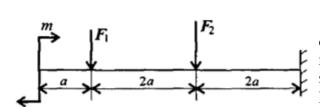
Задача №14



Для консольной балки нагруженной сосредоточенными силами F1=12 кH, F2=5 кH и парой сил и моментом M=7 кH*м, построить эпюры поперечных сил и изгибающих моментов. Материал –сталь, $[\sigma] = 160$ МПа, a = 0.2 м.

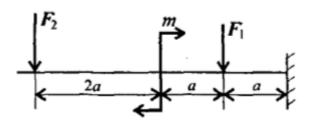

Задача №15

Для консольной балки нагруженной сосредоточенными силами F1=14кH, F2=8кH и парой сил и моментом M=6 кH*м, построить эпюры поперечных сил и изгибающих моментов. Материал —сталь, $[\sigma]$ = 160МПа, a = 0,3 м.


Задача №16

Для консольной балки нагруженной сосредоточенными силами F1=16 кH, F2=8 кН и парой сил и моментом М=5кН*м, построить эпюры поперечных сил и изгибающих моментов. Материал –сталь, $[\sigma] = 160$ МПа, a = 0.3 м.

Задача №17

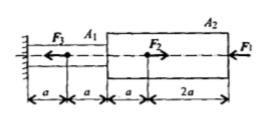

Для консольной балки нагруженной сосредоточенными силами F1=18 кH, F2=12 кH и парой сил и моментом M=4 кH*м, построить эпюры поперечных сил и изгибающих моментов. Материал –сталь, $[\sigma] = 160$ МПа, a = 0.4 м.

Задача №18

Для консольной балки нагруженной сосредоточенными силами F1=10 кH, F2=13 кH и парой сил и моментом M=8 кH*м, построить эпюры поперечных сил и изгибающих моментов. Материал –сталь, $[\sigma] = 160$ МПа, a = 0.4 м.

Задача

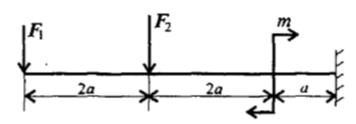
№19


Для консольной балки нагруженной сосредоточенными силами F1=22 кH, F2=17 кH и парой сил и моментом M=7 кH*м, построить эпюры поперечных сил и изгибающих моментов. Материал –сталь, $[\sigma]=160$ МПа, a=0,5 м.

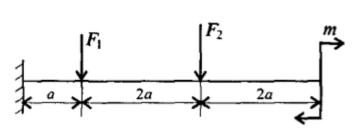
F_1 F_2 F_2 F_3 F_4 F_2 F_2 F_3 F_4 F_2

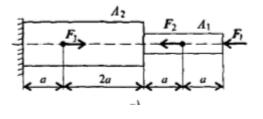
Задача №20

Для консольной балки нагруженной сосредоточенными силами F1=24 кH, F2=18кH и парой сил и моментом M=6


кН*м, построить эпюры поперечных сил и изгибающих моментов. Материал –сталь, $[\sigma] = 160$ МПа, a = 0.5м.

Залача №21


Построить эпюры продольных сил и нормальных напряжений по длине бруса. Определить перемещение свободного конца бруса. Двухступенчатый стальной брус нагружен силами F_1 =12 кH, F_2 =7 кH, F_3 =13 кH. Площади поперечных сечений A_1 = 0,5 см², A_2 = 1,2 см². a=0,2 м. Принять E=2*10⁵ H/мм².


Для консольной балки нагруженной сосредоточенными силами F1=26 кH, F2=22 кH и парой сил и моментом M=5 кH*м, построить эпюры поперечных сил и изгибающих моментов. Материал — сталь, $[\sigma]=160$ МПа, a=0.6 м.

Задача №23

Для консольной балки нагруженной сосредоточенными силами F1=28 кH, F2=24 кH и парой сил и моментом M=4 кH*м, построить эпюры поперечных сил и изгибающих моментов. Материал – сталь, $[\sigma]=160$ МПа, a=0,6 м.

Задача №24

Построить эпюры продольных сил и нормальных напряжений по длине бруса. Определить перемещение свободного конца бруса. Двухступенчатый стальной брус нагружен силами F_1 =2 кH, F_2 =3 кH, F_3 =5 кH. Площади поперечных сечений A_1 =2 см², A_2 =4 см². a=0,2 м. Принять E=2*10⁵ H/мм².

2.2.2. Критерии оценивания

В результате экзамена обучающийся может получить следующие оценки с учетом продемонстрированных знаний:

- «отлично» обучающийся должен безошибочно ответить на все вопросы, представленные в билете, решить задачу, а также продемонстрировать свободное владение материалом при ответе на дополнительные вопросы.
- «хорошо» обучающийся должен безошибочно ответить на вопросы, представленные в билете, решить задачу (возможно с некоторыми погрешностями), но не точно или не в полном объеме раскрывать дополнительно заданные вопросы.
- «удовлетворительно» обучающийся должен ответить на вопросы, представленные в билете, но демонстрирует слабое знание при ответе на дополнительные вопросы.

- «неудовлетворительно» – обучающийся продемонстрировал слабые знания при ответе на вопросы, сформулированные в билете, не ответил ни на один из дополнительных вопросов. После предложения второго (дополнительного) билета и соответствующей подготовке к ответу также не продемонстрировал знаний по данному предмету.