Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Пономарева Светлана Викторовна Должность: Проректор по УР и НО Дата подписания: 20.09.2023 20:52:27 Уникальный программный ключ:

bb52f959411e64617366ef2977b97e87139b1a2d

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (ДГТУ)

АВИАЦИОННЫЙ КОЛЛЕДЖ

	y]	ГВЕРЖДАЮ
	Ди	иректор колледжа
		А.И. Азарова
личная	подпись	инициалы, фамилия
« »		2021 г.
	ег. №	

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по дисциплине ЕН.01 Элементы высшей математики основной образовательной программы по специальности СПО 09.02.07 Информационные системы и программирование базовой подготовки

І. Паспорт комплекта оценочных средств

1. Область применения комплекта оценочных средств

Комплект оценочных средств предназначен для оценки результатов освоения дисциплины <u>EH.01</u> «Элементы высшей математики»

Таблица 1

Результаты освоения (объекты оценивания)	Основные показатели оценки результата и их критерии	Тип задания; № задания	Форма аттестации (в соответствии с учебным планом)
Уметь:			
Выполнять операции над матрицами и решать системы линейных уравнений	- выполнение действий над матрицами: сложение, вычитание, умножение, умножение матрицы на число -вычисление определителей - решение систем линейных уравнений методом обратной матрицы - решение систем линейных уравнений по формулам Крамера - решение систем линейных уравнений методом Гаусса	Устный опрос Самостоятельные работы; практические работы контрольные работы;	Контрольная работа Дифференцированный зачет
Решать задачи, используя уравнения прямых и кривых второго порядка на плоскости	- Выполнение действий над векторами: сложение и вычитание векторов, умножение вектора на число - Нахождение скалярного, векторного и смешанного произведения векторов - Составление уравнений прямых и кривых 2 порядка, их построение	Устный опрос Самостоятельные работы; практические работы контрольные работы;	Контрольная работа Дифференцированный зачет
Применять методы дифференциального и интегрального исчисления	-Вычисление предела функции в точке и в бесконечности - Исследование функции на непрерывность в точке - Нахождение производной функции - Нахождение производной сложной функции - Вычисление производной неявной функции. Логарифмическое дифференцирование Производная функции, заданной параметрически Исследование функции с помощью производной и построение графика - Нахождение неопределенных интегралов - Интегрирование функций, содержащих квадратный трехчлен. Интегрирование рациональных функций	Устный опрос Самостоятельные работы; практические работы контрольные работы;	Контрольная работа Дифференцированный зачет

Решать дифференциальные уравнения	- Вычисление определенных интегралов -Вычисление площадей фигур с помощью определенного интеграла -Исследование сходимости положительных, знакочередующихся рядов Разложение функции в степенной ряд -Решение дифференциальных уравнений первого и второго	Устный опрос Самостоятельные	Контрольная работа Дифференцированный
) passivinos	порядка (перечислить виды)	работы; практические работы контрольные работы;	зачет
Пользоваться понятиями теории комплексных чисел	- Производить действия с комплексными числами в алгебраической, тригонометрической, показательной формах Осуществлять геометрическую интерпретацию комплексного числаПереводить комплексные числа из одной формы в другую.	Устный опрос Самостоятельные работы; практические работы контрольные работы;	Контрольная работа Дифференцированный зачет
основы математического анализа, линейной алгебры и аналитической геометрии;	- Воспроизводить алгоритмы решения систем линейных уравнений методом обратной матрицы, по формулам Крамера, методом Гаусса - Воспроизводить Скалярное, векторное и смешанное произведения векторов - Определять уравнения кривых второго порядка	Устный опрос Самостоятельные работы; практические работы контрольные работы;	Контрольная работа Дифференцированный зачет
основы дифференциального и интегрального исчисления;	- Воспроизводить методы вычисления пределов, замечательные пределы - Классифицировать точки разрыва функции - Воспроизводить правила дифференцирования и производные основных элементарных функций - Воспроизводить алгоритм построения графиков функций с помощью производной - Называть табличные интегралы методом замены переменной, интегрированием по частямиспользовать приложение определенного интеграла к вычислению площадей плоских фигур, объемов тел вращения, пути, пройденного точкой	Устный опрос Самостоятельные работы; практические работы контрольные работы;	Контрольная работа Дифференцированный зачет
основы теории комплексных чисел.	- Представлять комплексного числа в алгебраической, тригонометрической, показательной	Устный опрос Самостоятельные работы;	Контрольная работа Дифференцированный зачет

формах, выполнять действия в них.	практические работы контрольные	
	работы	

2. Комплект фонда оценочных средств

2.1. Задания для текущего контроля с критериями оценивания

1) Задания в тестовой форме (пример) по теме «Линейная алгебра»

 $A = \begin{pmatrix} 4 & 1 \\ -2 & -3 \end{pmatrix}, \text{ то матрица } 5A \text{ имеет вид:}$ 1. Если матрица $a) \begin{pmatrix} 24 & 10 \\ -12 & -30 \end{pmatrix} b) \begin{pmatrix} 20 & 5 \\ -10 & -15 \end{pmatrix} c) \begin{pmatrix} -20 & 5 \\ -10 & -3 \end{pmatrix}$

$$A = \begin{pmatrix} -12 & -30 \end{pmatrix} \frac{b}{b} \begin{pmatrix} -10 & -15 \end{pmatrix} c \begin{pmatrix} -10 & -3 \end{pmatrix}$$
 $A = \begin{pmatrix} 1 & 0 & 4 \\ 3 & 1 & 2 \\ -4 & 1 & 2 \end{pmatrix}$ $u B = \begin{pmatrix} 2 & 1 & -1 \\ 3 & 0 & 1 \\ 5 & 2 & -3 \end{pmatrix}$, то матрица $2A + B$ имеет вид: $\begin{pmatrix} 4 & 1 & 7 \end{pmatrix}$ $\begin{pmatrix} -4 & 1 & -7 \end{pmatrix}$ $\begin{pmatrix} -1 & 8 & 4 \end{pmatrix}$

2. Если матрицы

a)
$$\begin{pmatrix} 4 & 1 & 7 \\ 9 & 2 & 5 \\ -3 & 4 & 1 \end{pmatrix}$$
 b) $\begin{pmatrix} -4 & 1 & -7 \\ 9 & 1 & 5 \\ -3 & 1 & 2 \end{pmatrix}$ c) $\begin{pmatrix} -1 & 8 & 4 \\ -3 & 1 & -2 \\ 4 & 1 & 0 \end{pmatrix}$

$$A = \begin{pmatrix} 4 & 1 & 7 \\ 9 & 2 & 5 \\ -3 & 4 & 2 \end{pmatrix}$$

указать сумму элементов, расположенных на главной 3. Для матрицы диагонали

$$A = \begin{pmatrix} 4 & 1 & 7 \\ 9 & 2 & 5 \\ -3 & 4 & 2 \end{pmatrix}$$
VKa3

указать сумму элементов, расположенных на побоч-4. Для матрицы ной диагонали

- 5. При умножении матрицы A на матрицу B должно соблюдаться условие:
 - а) число строк матрицы A равно числу строк матрицы B
 - b) число строк матрицы A равно числу столбцов матрицы B
 - с) число столбцов матрицы A равно числу строк матрицы B
- 6. Квадратная матрица называется диагональной, если:
 - а) элементы, лежащие на главной диагонали равны нулю
 - b) элементы, не лежащие на главной диагонали равны нулю
 - а) элементы, лежащие на побочной диагонали равны нулю

$$\begin{bmatrix} 0 & 4 & 2 \\ 0 & 0 & 2\alpha - 1 \end{bmatrix}$$
 page Hyun?

7. При каком значении α определитель $\begin{vmatrix} 0 & 4 & 2 \\ 0 & 0 & 2\alpha - 1 \end{vmatrix}$ равен нулю?

$$a)2 b)12 c) -2$$

8. Если поменять местами две строки (два столбца) квадратной матрицы, то определитель:

- а) не изменится
 - b) станет равным нулю
 - с) поменяет знак

9. Чему равен минор M_{21} определителя $\begin{bmatrix} -1 & 2 & 0 \\ 3 & 7 & -1 \\ 5 & 4 & 2 \end{bmatrix}_{2}$

$$M_{31}$$
 определителя $\begin{bmatrix} -1 & 2 & 0 \\ 3 & 7 & -1 \\ 5 & 4 & 2 \end{bmatrix}$?

10. Чему равен минор M_{31} определителя a) 4 b) -2

11. Чему равно алгебраическое дополнение A_{21} определителя

a) -4 b) 0

12. Чему равно алгебраическое дополнение а) 4 в) -2 с) 0 $\begin{vmatrix} -1 & 2 & 0 \\ 3 & 7 & -1 \\ 5 & 4 & 2 \end{vmatrix}_{?}$

 $\begin{cases} 3x - y = 5 \\ -2x + y + z = 0 \\ 2x - y + 4z = 15 \end{cases}$

13. Чему равен главный определитель системы уравнений a) -5 b) 6 c) 5

 $A = \begin{pmatrix} 2 & 0 \\ 3 & -4 \end{pmatrix} \ _{\mathbf{U}} \ D = \begin{pmatrix} 1 & 2 \\ -2 & 0 \end{pmatrix},$ то определитель матрицы $A \cdot D$ равен:

$$\Delta = \begin{vmatrix} -3 & -2 & 1 & 0 \\ 2 & -2 & 1 & 4 \\ 4 & 0 & -1 & 2 \\ 3 & 1 & -1 & 4 \end{vmatrix}$$

15. Найти минор для элемента a_{32} определителя a)2 b)20 c)-20

$$\Delta = \begin{vmatrix} -3 & -2 & 1 & 0 \\ 2 & -2 & 1 & 4 \\ 4 & 0 & -1 & 2 \\ 3 & 1 & -1 & 4 \end{vmatrix}$$

16. Найти алгебраическое дополнение для элемента a_{32} определителя a)2 b)20 c)-20

$$\Delta = \begin{vmatrix} -4 & 0 & 1 \\ 2 & -1 & 3 \\ 3 & 2 & 2 \end{vmatrix}$$

17. Найти минор для элемента a_{23} определителя

$$a) - 8b) 8c) - 5$$

$$\Delta = \begin{vmatrix} -4 & 0 & 1 \\ 2 & -1 & 3 \\ 3 & 2 & 2 \end{vmatrix}$$

18. Найти алгебраическое дополнение для элемента a_{23} определителя

$$(a) - (8b) (8c) - 5$$

2) Практическая работа (пример)

Практическая работа № 1

Вычисление определителей. Действия над матрицами. Вычисление обратной матрицы Цель работы: Проверить знание свойств определителей 2 и 3 порядков, правила вычисления определителей, вычислительные навыки. Вычисление обратной матрицы

Теоретический материал

Определение 1. Матрицей размера 2 х 2 называется совокупность чисел, расположенных в виде таблицы из 2 строк и 2 столбцов. Обозначается

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$

 $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$ эту матрицу, называются ее элементами и Числа, составляющие обозначаются буквой с двумя индексами. Первый индекс указывает номер строки, а второй - номер столбца, в которых стоит данное число.

Определение 2. Определителем (или детерминантом) второго порядка, соответствующим данной матрице, называется число $a_{11} \cdot a_{22} - a_{21} \cdot a_{12}$.

Определитель обозначают символом

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$$

$$\Pi \text{о определению,} \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11} \cdot a_{22} - a_{21} \cdot a_{12}.$$

Числа a_{11} , a_{12} , a_{21} , a_{22} называются элементами определителя.

Определение 3. Аналогично, если

Определение 3. Аналогично, если
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
- квадратная матрица размера 3 х 3 (3 строки, 3 столбца), то соответствующим ей определи

(3 строки, 3 столбца), то соответствующим ей определителем третьего порядка называется число, которое вычисляется следующим образом

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \cdot \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \cdot \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \cdot \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}.$$

Правило «треугольников» (правило Сарруса)

Задания

1)
$$\Delta = \begin{vmatrix} -\kappa_1 & 2 + \kappa_2 \\ \kappa_1 \cdot \kappa_2 & 5 \end{vmatrix}$$
, $2\Delta = \begin{vmatrix} \frac{\kappa_1}{3} & 5^2 \\ 3 \cdot \kappa_2 & 6 \end{vmatrix}$

1. Вычислить определители второго порядка:

$$3)\Delta = \begin{vmatrix} 9^{0.5} & \kappa_1 \cdot 64^{\frac{1}{6}} \\ (0.5)^{-3} & \sqrt{4^2} \end{vmatrix}$$

2.Вычислить определители третьего порядка:

1)
$$\Delta = \begin{vmatrix} -1 & 3\kappa_1 & 2 \\ 2 & 8 & \kappa_2 \\ 1 & 1 & 2 \end{vmatrix}$$
, 2) $\Delta = \begin{vmatrix} 3\kappa_2 & 4 & -5 \\ 8 & 7\kappa_2 - 2 & -2 \\ 2 & -1 & 8 \end{vmatrix}$, 3) $\Delta = \begin{vmatrix} 1 & -2 & \kappa_1 \cdot \kappa_2 \\ 3 & \kappa_1 & -5 \\ 2 & \kappa_2 & 5 \end{vmatrix}$

$$\begin{vmatrix} -1 & x \cdot \kappa_1 & 2 \\ 2 & 8 & 3 \\ 1 & 1 & 2 \end{vmatrix} + \kappa_2 \cdot \begin{vmatrix} 3 & 2 \\ x & -4 \end{vmatrix} = \begin{vmatrix} \kappa_1 & x & 1 \\ -1 & -2 & 0 \\ 3 & 4 & \kappa_2 \end{vmatrix}$$

3. Решить уравнение:

Вариант	κ_1	κ_2	Вар	риант	κ_2
1	3	-2		<i>16</i> 4	-1
2	4	1		17 5	1
3	3	-4		18 2	0
4	2	1		19 -2	1
5	3	-3		20 2	-2
6	1	5		21 0	7
7	-2	3		22 -1	4
8	6	-2		23 -3	3
9	-6	1		24 -4	1
10	-5	1		25 0	8
11	-2	4		26 4	-2
12	1	3		27 -1	3
13	-3	2		28 2	-3
14	-4	-1		29 -2	5
15	-1	5		30 -5	-1

Ответы

вариант	1	задан	ие	2	задани	e	вариант]	задан	ие	2	2 задание	е	3
	1	2	3	1	2	3		1	2	3	1	2	3	
1.	-15	6	-180	-84	-220	127	16.	-16	63	-244	-89	-100	109	
2.	-32	-63	-244	-63	-68	55	17.	-40	-65	68	-72	-68	45	
3.	-39	6	-180	-104	2372	261	18.	-10	4	-116	-52	232	60	
4.	-16	-71	-20	-45	-68	63	19.	16	-79	140	-9	-68	59	
5.	-24	-219	-180	-94	1212	185	20.	-10	146	-116	-64	-220	90	
6.	-40	-373	-52	-20	4028	145	21.	0	-925	12	-21	8092	85	
7.	40	-229	140	-19	1308	-23	22.	29	-302	76	-24	2500	9	
8.	-30	162	-372	-138	-220	286	23.	45	231	204	-16	1308	-85	

9.	48	-87	396	27	-68	-65	24.	32	-83	268	9	-68	-9	
10.	40	-85	332	18	-68	-35	25.	0	-600	12	-20	10628	90	
11.	10	-304	140	-24	2500	-68	26.	-20	158	-244	-102	-220	172	
12.	-20	-223	-52	-36	1308	91	27.	20	-227	76	-18	1308	27	
13.	39	156	204	-8	452	-27	28.	14	229	-116	-73	1212	123	
14.	16	63	268	31	-100	45	29.	80	-379	-140	-29	4028	-125	
15.	40	-377	76	-26	4028	-15	30.	30	65	332	46	-100	55	

Решение типового варианта

Вычислить определители.

1)
$$\begin{vmatrix} 2 & 5 \\ -3 & -4 \end{vmatrix} = 2 \cdot (-4) - (-3) \cdot 5 = -8 + 15 = 7$$

2) $\begin{vmatrix} 3 & 2 & 1 \\ 2 & 5 & 3 \\ 3 & 4 & 3 \end{vmatrix} = 3 \cdot \begin{vmatrix} 5 & 3 \\ 4 & 3 \end{vmatrix} - 2 \cdot \begin{vmatrix} 2 & 3 \\ 3 & 3 \end{vmatrix} + 1 \cdot \begin{vmatrix} 2 & 5 \\ 3 & 4 \end{vmatrix} = 3 \cdot (15 - 12) - 2 \cdot (6 - 9) + (8 - 15) = 9 + 6 - 7$

Решить уравнения:

=8

Решить уравнения:

1).
$$x^2 + \begin{vmatrix} 2x & 5 \\ 3 & 1 \end{vmatrix} = 0$$
 $x^2 + (2x - 15) = 0$
 $x^2 + 2x - 15 = 0$
 $x_1 = -5, x_2 = 3$

2). $\begin{vmatrix} 1 & -2 & 2 \\ 1 & 3 & 1 \\ 3 & x^2 & 2 \end{vmatrix} + \begin{vmatrix} -5 & x \\ 3 & 4 \end{vmatrix} + 8 \cdot \begin{vmatrix} 2 & 4 \\ 3 & 7 \end{vmatrix} = 0$
 $1 \cdot \begin{vmatrix} 3 & 1 \\ x^2 & 2 \end{vmatrix} + 2 \cdot \begin{vmatrix} 1 & 1 \\ 3 & 2 \end{vmatrix} + 2 \cdot \begin{vmatrix} 1 & 3 \\ 3 & x^2 \end{vmatrix} + (-20 - 3x) + 8 \cdot (14 - 12) = 0$
 $6 - x^2 + 2 \cdot (2 - 3) + 2 \cdot (x^2 - 9) - 20 - 3x + 8 \cdot 2 = 0$
 $6 - x^2 - 2 + 2x^2 - 18 - 20 - 3x + 16 = 0$
 $x^2 - 3x - 18 = 0$
 $x_1 = 6, x_2 = -3$

Контрольные вопросы

- 1. Что называется определителем матрицы?
- 2. Какие способы вычисления определителя третьего порядка вам известны?
- 3. Перечислите свойства определителей.

3) Самостоятельная работа (пример)

Вариант 1

Даны векторы $\vec{a}(9;-2;1)$ и $\vec{b}(4;3;0)$ (для № 1-5).

- 1. Найти $\vec{a} \cdot \vec{b}$.(Ответ: 24)
- 2. Найти $\left(\vec{a} \wedge \vec{b}\right)$ Ответ: $\left(\frac{24}{5\sqrt{86}}\right)$
- 3. Найти \vec{a}^2 .(Ответ: 86)
- 4. Найти $|\vec{b}|$.(Ответ: 5)

- 5. Найти координаты векторов $\vec{c} = \vec{a} + \vec{b}$, $\vec{d} = \vec{a} \vec{b}$, $\vec{f} = -3\vec{a}$.(Ответ: $c(13;1;1),\ d(5;-5;1),\ f(-27;6,0)$)
- 6. В прямоугольной декартовой системе координат построить точки A (0; 0), B (3; -4), C (-3; 4). Определить расстояние между точками A и B, B и C, A и C. (Omem: |AB| = 5, |BC| = 10, |AC| = 5

Вариант 2

Даны векторы \vec{a} (−3;2;1) и \vec{b} (3;0;4) (для № 1-5).

- 1. Найти $\vec{a} \cdot \vec{b}$.(Ответ:-5)
- 2. Найти $(\vec{a} \wedge \vec{b})$.(Ответ: $-\frac{1}{\sqrt{14}}$)
- 3. Найти \vec{a}^2 .(Ответ: 14)
- 4. Найти $|\vec{b}|$.(Ответ: 5)
- 5. Найти координаты векторов $\vec{c}=\vec{a}+\vec{b}$, $\vec{d}=\vec{a}-\vec{b}$, $\vec{f}=-3\vec{a}$. (*Ответ*: c(0;2;5), d(-6;2;-3), f(9;-6,-3))
- 6. В прямоугольной декартовой системе координат построить точки A (0; 0), C (-3; 4), D (-2; 2) E (10; -3). Определить расстояние между точками C и D, A и D, D и E. (Omsem: $|CD| = \sqrt{5}$, $|AD| = 2\sqrt{2}$, |DE| = 13)

2.2. Задания для проведения дифференцированного зачета

2.2.1. Перечень вопросов к зачету, экзамену

Теоретические вопросы

Раздел 1. Элементы линейной алгебры

- 1. Определители. Свойства определителей. Вычисление определителей по определению, разложением по элементам ряда, понижением порядка, методом Гаусса (приведением к треугольному виду).
- 2. Матрицы. Действия над матрицами. Определитель матрицы. Вырожденные и невырожденные матрицы. Ранг матрицы. Матрица, обратная данной матрице. Способы вычисления обратной матрицы.
- 3. Системы линейных алгебраических уравнений, основные методы их решения: метод Крамера, метод Гаусса, матричный метод.
- 4. Системы линейных однородных уравнений. Теорема Кронекера Капелли.

Раздел 2. Элементы аналитической геометрии

- 5. Определения вектора, длины вектора, коллинеарных векторов, сонаправленных и противоположно направленных векторов, направления вектора, равных векторов, компланарных векторов.
- 6. Линейные операции над векторами: сложение и вычитание векторов, умножение вектора на число. Линейная зависимость векторов.
- 7. Векторный базис на плоскости и в пространстве. Координаты вектора относительно данного базиса. Действия над векторами в координатах.
- 8. Скалярное произведение векторов, его свойства. Вычисление скалярного произведения векторов в координатах. Применение скалярного произведения векторов для решения метрических задач.

- 9. Векторное произведение векторов, его свойства. Вычисление векторного произведения векторов в координатах. Применение векторного произведения векторов для решения метрических задач.
- 10. *Смешанное произведение векторов, его свойства. Вычисление смешанного произведения векторов в координатах. Применение смешанного произведения векторов для решения метрических задач.
- 11. Уравнения прямой на плоскости, заданной: точкой и направляющим вектором, двумя точками, точкой и вектором нормали, точкой и угловым коэффициентом. Уравнение прямой «в отрезках». Общее уравнение прямой. Геометрический смысл коэффициентов.
- 12. Взаимное расположение двух прямых на плоскости. Вычисление угла между двумя прямыми. Условия параллельности и перпендикулярности двух прямых.
- 13. Кривые второго порядка на плоскости. Окружность, ее уравнение.
- 14. Эллипс, его каноническое уравнение и свойства.
- 15. Гипербола, ее каноническое уравнение и свойства.
- 16. Парабола, ее каноническое уравнение и свойства.

Раздел 3. Элементы математического анализа

- 17. Числовая последовательность, ее свойства. Предел числовой последовательности, его свойства. Бесконечно большие и бесконечно малые последовательности.
- 18. Предел функции при $x \to x_0$, $x \to \pm \infty$. Свойства пределов. Бесконечно большие и бесконечно малые функции. Правила раскрытия неопределенностей.
- 19. Замечательные пределы, их следствия.
- 20. *Правила раскрытия неопределенностей. Эквивалентные функции. Правило Лопиталя.
- 21. Односторонние пределы. Непрерывность функции в точке и на промежутке. Непрерывность суммы, произведения и частного двух функций. Типы точек разрыва. Свойства непрерывных функций.
- 22. Определение производной, ее геометрический и механический смысл.
- 23. Непрерывность дифференцируемой функции.
- 24. Дифференцирование суммы, произведения, частного двух функций, сложной функции.
- 25. Дифференцирование неявной функции.
- 26. Дифференцирование функции, заданной параметрически.
- 27. Логарифмическое дифференцирование.
- 28. Возрастающая, убывающая, постоянная, монотонная функция (определения). Необходимые условия монотонности функции. Достаточные условия монотонности функции.
- 29. Дифференциал функции, его геометрический смысл. Применение дифференциала к приближенным вычислениям.
- 30. Производные и дифференциалы высших порядков. Формула Тейлора.
- 31. Точка минимума, точка максимума, точка экстремума, критическая точка первого рода данной функции. Необходимое условие экстремума функции (теорема Ферма). Достаточные условия экстремума функции.
- 32. Наибольшее и наименьшее значения функции на данном промежутке. Решение задач на наибольшие и наименьшие значения функции.
- 33. Исследование функции на выпуклость и точки перегиба графика.
- 34. Асимптоты графика функции.
- 35. Исследование функций и построение графиков.
- 36. Первообразная и неопределенный интеграл, их свойства.
- 37. Методы вычисления неопределенных интегралов: непосредственное интегрирование, интегрирование подстановкой, интегрирование по частям.
- 38. Интегрирование функций, содержащих квадратный трехчлен.
- 39. Интегрирование рациональных дробей.
- 40. Интегрирование тригонометрических функций.

- 41. Интегрирование простейших иррациональных функций.
- 42. Определенный интеграл, его свойства.
- 43. Вычисление определенного интеграла по формуле Ньютона-Лейбница, подстановкой и по частям.
- 44. Криволинейная трапеция, ее площадь. Теорема о геометрическом смысле определенного интеграла. Вычисление площадей плоских фигур.
- 45. Несобственные интегралы.
- 46. Функция нескольких переменных, предел и непрерывность функции нескольких переменных (определения).
- 47. Частные производные и полный дифференциал функции нескольких переменных.
- 48. Касательная плоскость и нормаль к поверхности.
- 49. Частные производные и дифференциалы высших порядков.
- 50. Исследование функции двух переменных на экстремум.
- 51. Двойной интеграл, его свойства. Вычисление двойного интеграла в декартовых координатах. Изменение порядка интегрирования.
- 52. Числовые ряды. Необходимое условие сходимости числового ряда. Достаточные условия сходимости числовых рядов: признаки сравнения рядов, признак Даламбера, радикальный признак Коши, интегральный признак Коши.
- 53. Знакопеременные и знакочередующиеся ряды, их абсолютная и условная сходимость.
- 54. Функциональные ряды. Степенные ряды. Исследование степенных рядов на сходимость.

Раздел 4. Дифференциальные уравнения

- 55. Дифференциальное уравнение. Порядок дифференциального уравнения. Понятие об общем и частном решениях дифференциального уравнения, о задаче Коши. Интегральная кривая дифференциального уравнения.
- 56. Простейшие дифференциальные уравнения первого порядка.
- 57. Дифференциальные уравнения с разделяющимися переменными.
- 58. Однородные линейные дифференциальные уравнения первого порядка.
- 59. Неоднородные линейные дифференциальные уравнения первого порядка.
- 60. Простейшие дифференциальные уравнения второго порядка.
- 61. Однородные линейные дифференциальные уравнения второго порядка с постоянными коэффициентами. Дифференциальное уравнение гармонических колебаний.
- 62. Неоднородные линейные дифференциальные уравнения второго порядка с постоянными коэффициентами.

Раздел 5. Комплексные числа

- 63. Определение комплексного числа. Алгебраическая форма комплексного числа. Действительная и мнимая части комплексного числа. Мнимая единица. Действия над комплексными числами в алгебраической форме.
- 64. Геометрическая интерпретация комплексного числа. Модуль и аргумент комплексного числа. Тригонометрическая и показательная формы комплексного числа.
- 65. Формулы перехода от одной формы комплексного числа к другой его форме.
- 66. Действия над комплексными числами в алгебраической, тригонометрической и показательной форме.
- 67. Решение квадратного уравнения с действительными коэффициентами на множестве комплексных чисел. Понятие об основной теореме алгебры.

Практические задания

$$A = \begin{vmatrix} 7 & 3 & -2 \\ -8 & 1 & 9 \\ 5 & -6 & 4 \end{vmatrix}$$
 по определению определителя третьего

1. Вычислить определитель порядка.

$$A = \begin{vmatrix} 2 & 5 & -4 \\ -3 & -8 & 1 \\ 7 & -9 & 6 \end{vmatrix}$$

2. Вычислить определитель столбца.

разложением по элементам второго

$$A = \begin{vmatrix} 1 & -2 & 3 & -1 \\ 2 & -3 & 2 & 4 \\ -2 & -1 & 1 & -3 \\ -1 & 5 & 2 & -4 \end{vmatrix}$$

$$A = \begin{vmatrix} 1 & 2 & 3 & 4 \\ -1 & 3 & -2 & 5 \\ 2 & 1 & 3 & -1 \\ -2 & -1 & -3 & 2 \end{vmatrix}$$

$$A = \begin{pmatrix} 4 & -2 & 6 \\ -6 & 3 & -9 \\ 2 & -1 & 5 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & -2 & 3 & -4 \\ 3 & 5 & -2 & 6 \\ 5 & 1 & 4 & -2 \\ 1 & 0 & 8 & 14 \end{pmatrix}$$

рицы
$$\begin{pmatrix} 1 & 3 & 6 & 1 \end{pmatrix}$$
 как число ее линейно независимых строк. $\begin{pmatrix} 2 & 5 & 7 \end{pmatrix}$ $\begin{pmatrix} -3 & 6 & 1 \end{pmatrix}$

столбіда.
$$A = \begin{vmatrix} 1 & -2 & 3 & -1 \\ 2 & -3 & 2 & 4 \\ -2 & -1 & 1 & -3 \\ -1 & 5 & 2 & -4 \end{vmatrix}$$
 методом Гаусса.
$$A = \begin{vmatrix} 1 & 2 & 3 & 4 \\ -1 & 3 & -2 & 5 \\ 2 & 1 & 3 & -1 \\ -2 & -1 & -3 & 2 \end{vmatrix}$$
 понижением порядка.
$$A = \begin{pmatrix} 4 & -2 & 6 \\ -6 & 3 & -9 \\ 2 & -1 & 5 \end{pmatrix}$$
 по его определению.
$$A = \begin{pmatrix} 1 & -2 & 3 & -4 \\ -6 & 3 & -9 \\ 2 & -1 & 5 \end{pmatrix}$$
 по его определению.
$$A = \begin{pmatrix} 1 & -2 & 3 & -4 \\ 3 & 5 & -2 & 6 \\ 5 & 1 & 4 & -2 \\ 1 & 9 & -8 & 14 \end{pmatrix}$$
 как число ее линейно независимых строк.
$$A = \begin{pmatrix} 2 & 5 & 7 \\ -1 & 4 & -6 \\ 9 & 3 & -8 \end{pmatrix} = \begin{pmatrix} -3 & 6 & 1 \\ 2 & -5 & -9 \\ 4 & 8 & -7 \end{pmatrix}.$$
 Найти матрицу $C = 3 \cdot A - 4 \cdot B$.
$$A = \begin{pmatrix} 2 & 5 & 7 \\ -1 & 4 & -6 \\ 9 & 3 & -8 \end{pmatrix} = \begin{pmatrix} -3 & 6 & 1 \\ 2 & -5 & -9 \\ 4 & 8 & -7 \end{pmatrix}.$$
 Найти матрицу $C = 3 \cdot A - 4 \cdot B$.
$$A = \begin{pmatrix} 2 & 5 & 7 \\ -1 & 4 & -6 \\ 9 & 3 & -8 \end{pmatrix} = \begin{pmatrix} -3 & 6 & 1 \\ 2 & -5 & -9 \\ 4 & 8 & -7 \end{pmatrix}.$$
 8. Найти произведение матриц
$$A = \begin{pmatrix} 2 & 5 & 7 \\ -1 & 4 & -6 \\ 9 & 3 & -8 \end{pmatrix} = \begin{pmatrix} -3 & 6 & 1 \\ 2 & -5 & -9 \\ 4 & 8 & -7 \end{pmatrix}.$$
9. Решить матричным методом систему уравнений
$$A = \begin{pmatrix} 3 & 4 & 4 & 2 \\ 2 & 5 & 7 & 4 & 2 \\ 3 & 5 & 2 & 4 \\ 4 & 6 & 7 & 2 \\ 4 & 7 & 7 & 7 & 7 & 1 \end{pmatrix}$$

$$\begin{cases} x_1 - 4x_2 + 5x_3 = 29, \\ 3x_1 + 2x_2 - 3x_3 = -5, \\ 4x + x_1 - 2x_2 - 4 \end{cases}$$

9. Решить матричным методом систему уравнений
$$\begin{cases} x_1 + 2x_2 - 3x_3 = -4, \\ 2x_1 + 3x_2 - x_3 = 11, \\ 3x_1 + 5x_2 + 2x_3 = 7. \end{cases}$$
 10. Найти общее решение системы уравнений
$$A = \begin{pmatrix} 1 & -4 & 2 \\ 2 & -3 & 9 \\ 3 & -12 & 7 \end{pmatrix}.$$
 11. Найти матрицу, обратную матрице

$$A = \begin{pmatrix} 1 & -4 & 2 \\ 2 & -3 & 9 \\ 3 & -12 & 7 \end{pmatrix}$$

- A(3;-1;5) B(8;7;-11) C(-2;4;9). Найти вели-12. Даны координаты вершин треугольника: чину угла B и длину медианы AD.
- A(1;6;-2). B(-3;7;8). C(5;4;-1). Найти длину 13. Даны координаты вершин треугольника: его высоты СМ.
- A(4,2,-3). B(-1,5,8). C(7,4,-6). Составить 14. Даны координаты вершин треугольника: уравнение его высоты AM.
- 15. Даны координаты вершин треугольника: A(1;6;-2), B(-3;7;8), C(5;4;-1). Найти длину его высоты СМ.
- 16. Даны координаты точек: A(5;6;-2), B(-3;1;4), C(7;-4;9). Составить уравнение прямой, проходящей через точку A и параллельной прямой BC.
- 17. Даны координаты точек: A(5,6,-2), B(-3,1,4), C(7,-4,9). Составить уравнение прямой, проходящей через точку A и наклоненной к прямой BC под углом в $^{45^{\circ}}$.

- 18. Дано уравнение эллипса: $\frac{x^2}{36} + \frac{y^2}{11} = 1$. Найти координаты его вершин и фокусов и составить уравнения директрис.
- 19. Составить каноническое уравнение эллипса, зная его фокусы F_1 (12;0), F_2 (-12;0) и эксцентриситет $\varepsilon = 0.8$.

- 20. Дано уравнение гиперболы: $\frac{x^2}{16} \frac{y^2}{9} = 1$. Найти ее эксцентриситет и составить уравнения асимптот.
- 21. Составить каноническое уравнение гиперболы, зная ее вершины $A_1(10;0)$, $A_2(-10;0)$ и экспентриситет $\varepsilon = 1.2$
- 22. Дано уравнение параболы: $y^2 = -12x$. Найти координаты ее фокуса и составить уравнение директрисы.
- 23. Составить каноническое уравнение параболы, проходящей через точку M(9:-6). Рассмотреть все возможные случаи.
- 24. Вычислить предел: $\lim_{x\to 4} \frac{x^2 + x 20}{x^3 64}$
- 25. Вычислить предел: $\lim_{x \to 7} \frac{\sqrt{3x+4}-5}{2x-14}$
- 26. Вычислить предел: $\lim_{x\to\infty} \frac{4x^3 + 5x 20}{2x^3 64}$
- 27. Вычислить предел: $\lim_{x \to +\infty} \left(\sqrt{x^2 + 5x 6} x \right)$
- 28. Вычислить предел: $\lim_{x\to 0} \frac{\sin 15x}{tg\,20x}$
- 29. Вычислить предел: $\lim_{x\to 0} \frac{\cos 6x \cos 2x}{3x^2}$.
- $\lim_{x\to 0} \left(1-\frac{2x}{3}\right)^{\frac{6}{5x}}$ 30. Вычислить предел:

$$f(x) = \begin{cases} x^3 + 1, & ecnu \ x \le 1, \\ \sqrt{x+3}, & ecnu \ x > 1. \end{cases}$$

31. Исследовать функцию на непрерывность и точки разрыва:

$$f(x) = \begin{cases} sinx, ecnu & x < 0, \\ 2^x, ecnu & x \ge 0. \end{cases}$$

32. Исследовать функцию на непрерывность и точки разрыва:

$$f(x) = \begin{cases} x^2 + 3, & ecnu \ x < 2, \\ 9 - x, & ecnu \ x > 2. \end{cases}$$

33. Исследовать функцию на непрерывность и точки разрыва:

$$f(x) = \begin{cases} e^x, & ecnu \ x \le 0, \\ ln x, & ecnu \ x > 0. \end{cases}$$

34. Исследовать функцию на непрерывность и точки разрыва:

$$f(x) = \frac{x+2}{x^2+2x}$$

35. Исследовать функцию на непрерывность и точки разрыва:

36. Найти производную функции: $y = 5tg x (3ln x - 2e^x)$

37. Найти производную функции:
$$z = \frac{8\cos x + 6^x}{\sin x - 4x^5}$$

38. Найти производную функции: $f(x) = 12(5x^3 + 7)^{10}$

39. Найти производную функции: f(x) = ln(9 sin x - 2)

40. Найти производную функции: $f(x) = 6\sqrt{7\cos x + 8x}$

41. Найти производную неявной функции y = y(x) из уравнения $3x^2 - 2xy^2 = sin(x+y)$

41. Пайти производную неявной функции
$$\begin{cases} x = t \sin t, \\ y = t^2 \cos t. \end{cases}$$
42. Найти производную функции: $\begin{cases} (2x + 3)^4 \end{cases}$

$$y = \frac{(2x+3)^4 (5e^x - 6)^7}{(\sin x + 8)^9}$$

43. Найти производную функции:

44. Найти производную функции: $f(x) = (10x^2 + 1)^{\cos x}$

45. Исследовать на монотонность и экстремум функцию $y = x^3 + 3x^2 - 9x + 1$

46. Найти интервалы выпуклости и точки перегиба графика функции: $y = x^3 - 12x^2 + 5x + 7$

47. Найти асимптоты кривой: $y = \frac{6x}{x^2 - 3x - 4}$

48. Найти асимптоты кривой: $y = \frac{6x^2}{2x+5}$

49. Найти наибольшее и наименьшее значения функции $y = x^3 - 12x - 5$ на отрезке $\begin{bmatrix} -1,5 \end{bmatrix}$

50. Найти два числа, произведение которых равно 64, а сумма наименьшая из возможных.

51. Найти дифференциал функции $f(x) = 8x^3 \sqrt[4]{x}$ в точке $x_0 = 1$.

52. Вычислить интеграл: $\int \left(5^{x} + \frac{7}{1+x^{2}} - \frac{8}{x^{2}}\right) dx$

53. Вычислить интеграл: $\int 5^x \cdot 2^{3x} dx$

54. Вычислить интеграл:
$$\int \frac{\cos 2x}{\cos x - \sin x} dx$$
.

55. Вычислить интеграл:
$$\int (4 \sin x - 5)^6 \cos x \, dx$$
.

56. Вычислить интеграл:
$$\int \frac{\sin x \, dx}{3 + 5\cos x}$$

57. Вычислить интеграл:
$$\int \sin 8x \cos 3x \, dx$$

58. Вычислить интеграл:
$$\int \sin 5x \sin 7x \, dx$$

59. Вычислить интеграл:
$$\int \cos 4x \cos 6x \, dx$$

60. Вычислить интеграл:
$$\int \cos^3 x \, dx$$

61. Вычислить интеграл:
$$\int \sin^4 x \, dx$$

62. Вычислить интеграл:
$$\int x^5 \ln x \, dx$$

63. Вычислить интеграл:
$$\int (7x+1)\cos x \, dx$$

63. Вычислить интеграл:
$$\int \frac{(3x+19)dx}{(x-7)(x+1)}.$$
64. Вычислить интеграл:
$$\int \frac{(2x-5)dx}{(x-7)(x+1)}.$$

65. Вычислить интеграл:
$$\int \frac{(2x-5)dx}{x^2-2x-3}$$

66. Вычислить интеграл:
$$\int \frac{(2x+1)dx}{\sqrt{-x^2-6x-5}}$$

67. Вычислить интеграл:
$$\int \frac{(4x^2 + 3x + 30)dx}{(x^2 + 9)(x - 2)}$$

68. Вычислить интеграл:
$$\int \frac{dx}{\sqrt[3]{x^2} + \sqrt{x}}$$

69. Вычислить интеграл:
$$\int \frac{(\sqrt[4]{x} - 1)}{\sqrt{x} - 1} dx$$

70. Вычислить интеграл:
$$\int_{0}^{3} \frac{x \, dx}{7x^2 + 5}.$$

70. Вычислить интеграл:
$$\int_{0}^{1} \frac{1}{7x^2 + 5}$$
.

$$\int_{0}^{1} \sqrt{1 + 8x^{2}} x \, dx$$
71. Вычислить интеграл:

$$\int_{0}^{\pi} (\pi - x) \sin x \, dx$$

$$\int_{0}^{\infty} (\pi - x) \sin x \, dx$$
72. Вычислить интеграл:

73. Вычислить интеграл:
$$\int_{0}^{x} \frac{dx}{\sqrt{x}}$$

74. Вычислить интеграл:
$$\int_{\sqrt{3}}^{\infty} \frac{dx}{1+x^2}.$$
75. Вычислить интеграл:
$$\int_{0}^{\infty} \cos x dx$$
.

$$\int_{0}^{\infty} \cos x dx$$

- 76. Найти площадь фигуры, ограниченной линиями y=0, x=1, x=4, $y=\frac{8}{x}$.
- 77. Найти площадь фигуры, ограниченной линиями $y = x^2 12x$, y = 0
- 78. Найти площадь фигуры, ограниченной линиями x = 0, y = 0, $y = x^2 + 3$, y = 5 x
- 79. Найти площадь фигуры, ограниченной линиями x = 0, $y = \sqrt{x}$, x = 6 x
- 80. Найти площадь фигуры, ограниченной линиями $y = x^2 + 3$, y = 5 x.
- 81. Найти область определения функции $y = \sqrt{y^2 4x}$.

$$\lim_{\substack{x \to 0, \\ y \to 7}} \frac{\sin(3xy)}{x}.$$

82. Вычислить предел

83. Вычислить предел
$$\lim_{\substack{x \to 3, \\ y \to 0}} \frac{\sqrt{xy + 16} - 4}{xy}.$$

$$y = \frac{3x - 2y}{x^2 + y^2 - 49}.$$

- 84. Найти точки разрыва функции
- 85. Найти частные производные первого и второго порядка функции $z = x^3 - 5xy - 8y^2 - 6x + 9$ B TOUKE M(2;1).
- 86. Найти частные производные второго порядка функции $z = y \ln x$ в точке M(1;3)
- 87. Найти частные производные второго порядка функции $z = x \sin y y \cos x$.
- 88. Найти полный дифференциал функции $z = 3x^2 \sin y + 5x 2y$ при x = 1, y = 0, dx = 0.2. dv = -0.3.
- 89. Вычислить приближенно 1,05^{5,03}.
- 90. Исследовать на экстремум функцию z = 2xy 2x 6y 5.
- 91. Исследовать на экстремум функцию $z = x^2 4xy + 8y^2 6x + 20y 3$.

$$\int_{0}^{2} dx \int_{0}^{3} (x^{2} + 2xy) dy.$$

92. Вычислить двукратный интеграл

$$\iint xy\,dx\,dy$$

93. Вычислить двойной интеграл по области, ограниченной линиями y = 0, y = 2x, x = 3.

$$\int_{0}^{4} dx \int_{\frac{x}{2}}^{\sqrt{x}} f(x, y) dy$$

$$y' = \frac{72 \cos x}{v^{2}}$$

94. Изменить порядок интегрирования в интеграле

$$y' = \frac{72\cos x}{x^2}$$

95. Найти общее решение дифференциального уравнения

- 96. Найти общее решение дифференциального уравнения $y' = \frac{y}{x} + 5$
- 97. Найти общее решение дифференциального уравнения $xy y' = y^2 + 2x^2$.
- 98. Найти общее решение дифференциального уравнения $y' + 5y = 2xe^{-5x}$.
- 99. Найти общее решение дифференциального уравнения y'' 5y' 24y = 0
- 100. Найти общее решение дифференциального уравнения y'' + 6y' + 58y = 0.
- 101. Найти общее решение дифференциального уравнения y'' 4y' + 4y = 16x.
- 102. Найти общее решение дифференциального уравнения $y'' 3y' + 2y = 3e^{2x}$.
- 103. Найти общее решение дифференциального уравнения $y'' + 4y = xe^{2x}$.
- 104. Найти решение задачи Коши: y' = 2xy, y(0) = 5.
- 105. Найти решение задачи Коши: $y' = 7\cos x 2x$, y(0) = 8.
- 106. Найти решение задачи Коши: y' = 2xy, y(0) = 5.
- 107. Найти решение задачи Коши: y''-12y'+36y=0, y(0)=1, y'(0)=-11.
- 108. Исследовать на сходимость ряд $\sum_{n=1}^{\infty} \frac{2n+1}{3n-5}$.
- 109. Исследовать на сходимость ряд $\sum_{n=1}^{\infty} \frac{2^n}{n!}$
- 110. Исследовать на сходимость ряд $\sum_{n=1}^{\infty} \frac{5}{(2n+1)^{\frac{n}{2}}}$
- 111. Найти область сходимости ряда $\sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^n}{\sqrt{n}}$
- 112. Сколько членов ряда n=1 $\sqrt[n]{n}$ достаточно взять, чтобы вычислить его сумму с точностью до 0.001?
- 113. Представить число $z = -1 + \sqrt{3} i$ в тригонометрической и показательной форме. Изобразить число в виде вектора на координатной плоскости.
- $z = \frac{3 2i}{1 + 7i} 6i^{11}$.

$$z = \frac{4\left(\cos\frac{5\pi}{12} + i\sin\frac{5\pi}{12}\right)}{0.8\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)}$$

- 115. Вычислить и представить результат в алгебраической форме:
- 116. Вычислить z = -2i(4-3i) и представить результат в показательной форме.
- 117. Вычислить: $\left(-\sqrt{3}+i\right)^{10}$. Результат представить в алгебраической форме.
- 118. Решить уравнение на множестве комплексных чисел: $z^2 16z + 89 = 0$.
- 119. Решить уравнение на множестве комплексных чисел: $z^4 5z^2 36 = 0$.

17

120. Решить уравнение на множестве комплексных чисел: $z^3 + 64 = 0$.

2.2.2. Критерии оценивания

На зачет выносятся 4 вопроса из представленного перечня -2 теоретических, 2 практических. На ответ отводится 45 минут.

Критерии оценки:

Оценки «отлично» заслуживает обучающийся, который всесторонне и глубоко раскрыл содержание поставленных вопросов, показал взаимосвязь теории с практикой, продемонстрировал умение работать с научной литературой, делать теоретические и практические выводы. При этом должны быть полностью освещены теоретические вопросы и верно решены практические задания.

Оценки «хорошо» заслуживает обучающийся, который обстоятельно владеет материалом, однако не на все вопросы дает глубокие исчерпывающие и аргументированные ответы. При этом должен быть полностью освещены теоретические вопросы, в практическом задании могут быть допущены незначительные недочеты.

Оценки «удовлетворительно» заслуживает обучающийся, который в основном владеет материалом, однако поверхностно отвечает на вопросы, допускает существенные неточности. Ответы не отличаются ясностью и глубиной. При этом на теоретический вопрос дан неполный ответ, а в практическом задании допущена незначительная ошибка в вычислении.

Оценки «неудовлетворительно» заслуживает обучающийся, которые не отвечает требованиям, предъявленным для получения удовлетворительной оценки.

Приложение

Задания для оценки освоения дисциплины

Тема 1.1 Элементы линейной алгебры

Практическая работа № 1

Тема:

Вычисление определителей. Действия над матрицами. Вычисление обратной матрицы **Цель:** Проверить знание свойств определителей 2 и 3 порядков, правила вычисления определителей, вычисление обратной матрицы вычислительные навыки.

Задания

1)
$$\Delta = \begin{vmatrix} -\kappa_1 & 2 + \kappa_2 \\ \kappa_1 \cdot \kappa_2 & 5 \end{vmatrix}$$
, $2\Delta = \begin{vmatrix} \frac{\kappa_1}{3} & 5^2 \\ 3 \cdot \kappa_2 & 6 \end{vmatrix}$

1. Вычислить определители второго порядка:

$$3)\Delta = \begin{vmatrix} 9^{0.5} & \kappa_1 \cdot 64^{\frac{1}{6}} \\ (0.5)^{-3} & \sqrt{4^2} \end{vmatrix}$$

2.Вычислить определители третьего порядка

$$1) \Delta = \begin{vmatrix} -1 & 3\kappa_1 & 2 \\ 2 & 8 & \kappa_2 \\ 1 & 1 & 2 \end{vmatrix}, \quad 2) \Delta = \begin{vmatrix} 3\kappa_2 & 4 & -5 \\ 8 & 7\kappa_2 - 2 & -2 \\ 2 & -1 & 8 \end{vmatrix}, \quad 3) \Delta = \begin{vmatrix} 1 & -2 & \kappa_1 \cdot \kappa_2 \\ 3 & \kappa_1 & -5 \\ 2 & \kappa_2 & 5 \end{vmatrix}$$

$$\begin{vmatrix} -1 & x \cdot \kappa_1 & 2 \\ 2 & 8 & 3 \\ 1 & 1 & 2 \end{vmatrix} + \kappa_2 \cdot \begin{vmatrix} 3 & 2 \\ x & -4 \end{vmatrix} = \begin{vmatrix} \kappa_1 & x & 1 \\ -1 & -2 & 0 \\ 3 & 4 & \kappa_2 \end{vmatrix},$$

3. Решить уравнение:

Вариант	κ_1	κ_2	Вариант	κ_1	κ_2
1	3	-2	16	4	-1
2	4	1	17	5	1
3	3	-4	18	2	0
4	2	1	19	-2	1
5	3	-3	20	2	-2
6	1	5	21	0	7
7	-2	3	22	-1	4
8	6	-2	23	-3	3
9	-6	1	24	-4	1
10	-5	1	25	0	8
11	-2	4	26	4	-2
12	1	3	27	-1	3
13	-3	2	28	2	-3
14	-4	-1	29	-2	5
15	-1	5	30	-5	-1

Ответы

вариант	1	задані	ие	2	задани	e	вариант	1	задані	ие	4	2 задание	e
	1	2	3	1	2	3		1	2	3	1	2	3
16.	-15	6	-180	-84	-220	127	31.	-16	63	-244	-89	-100	109
17.	-32	-63	-244	-63	-68	55	32.	-40	-65	68	-72	-68	45
18.	-39	6	-180	-104	2372	261	33.	-10	4	-116	-52	232	60
19.	-16	-71	-20	-45	-68	63	34.	16	-79	140	-9	-68	59
20.	-24	-219	-180	-94	1212	185	35.	-10	146	-116	-64	-220	90
21.	-40	-373	-52	-20	4028	145	36.	0	-925	12	-21	8092	85
22.	40	-229	140	-19	1308	-23	37.	29	-302	76	-24	2500	9
23.	-30	162	-372	-138	-220	286	38.	45	231	204	-16	1308	-85
24.	48	-87	396	27	-68	-65	39.	32	-83	268	9	-68	-9
25.	40	-85	332	18	-68	-35	40.	0	-600	12	-20	10628	90
26.	10	-304	140	-24	2500	-68	41.	-20	158	-244	-102	-220	172
27.	-20	-223	-52	-36	1308	91	42.	20	-227	76	-18	1308	27
28.	39	156	204	-8	452	-27	43.	14	229	-116	-73	1212	123
29.	16	63	268	31	-100	45	44.	80	-379	-140	-29	4028	-125
30.	40	-377	76	-26	4028	-15	45.	30	65	332	46	-100	55

Контрольные вопросы:

- 1. Что называется определителем матрицы?
- 2. Как вычислить определитель второго порядка?
- 3. Какие способы вычисления определителя третьего порядка вам известны?
- 4. Перечислите свойства определителей.

Действия над матрицами

Цель: Проверить знания операций над матрицами, умения выполнять действия с матрицами: сложение, вычитание, умножение матрицы на число, произведение матриц

Задания

1. Выполнить действия над матрицами $D = 2 \cdot \left(A + B\right) - \kappa_1 \cdot B + \kappa_2 \cdot A$

$$D = 2 \cdot (A + B) - \kappa_1 \cdot B + \kappa_2 \cdot A$$

2.Вычислить матрицу и найти ее определитель
$$C = \cdot (\kappa_1 \cdot B + \kappa_2 \cdot A) \cdot B$$
 , где
$$A = \begin{pmatrix} 1 & 2 & -2 \\ -1 & -3 & 1 \\ 2 & 1 & 4 \end{pmatrix} \qquad B = \begin{pmatrix} \kappa_1 & -2 & -1 \\ 2 & 1 & 2 \\ 3 & -\kappa_2 & 4 \end{pmatrix}$$

3. Найти $C \cdot D$ u $D \cdot C$

Вариант	κ_1	κ_2	Ответ	Вариант	κ_1	κ_2	Ответ
			$\Delta_{ m c}$				$\Delta_{ m c}$
1	3	-2	741	16	4	-1	18343
2	4	1	36069	17	5	1	121446
3	3	-4	8359	18	2	0	1800
4	2	1	-1323	19	-2	1	-291
5	3	-3	810	20	2	-2	-144
6	1	5	-84134	21	0	7	-79233
7	-2	3	-2009	22	-1	4	-477
8	6	-2	-31696	23	-3	3	-16524
9	-6	1	199611	24	-4	1	-21195
10	-5	1	-73794	25	0	8	-129536
11	-2	4	-2520	26	4	-2	3000
12	1	3	-17756	27	-1	3	84
13	-3	2	-9581	28	2	-3	729
14	-4	-1	999	29	-2	5	-1463
15	-1	5	-1494	30	-5	-1	-7520

Ответы

вари-	CD	DC	вари-	CD	DC
ант			ант		
1.	(61 178 -104)	(215 22 122)	16.	(134 608 16)	(200 230 434)
	-32 317 -58	-394 81 -90		-468 600 -134 550 606 154	-936 294 -94
	$\left(-24 196 -29\right)$	144 -14 53		(-550 696 -154)	(-68 84 86)
2.	(82 364 -8)	(8 130 446)	17.	(-435 1057 399)	(-538 481 1229)
	-272 756 -70	-904 482 -50		-1045 1258 -130	-2078 915 -75
	\[\(-474 \ 1528 \ 9118 \)	$\begin{pmatrix} -152 & -20 & 230 \end{pmatrix}$		(-1796 2403 -185)	(-651 378 281)
3.	(1 66 -58)	(373 52 184)	18.	(-68 8 -160)	(-60 0 -80)
	-50 319 -86	-470 -5 -144		124 164 20	-60 36 -4
	32 114 -25	$\begin{pmatrix} -102 & -50 & -73 \end{pmatrix}$		(200 268 40)	(312 -156 160)
4.	(-96 - 26 - 192)	(-196 52 -142)	19.	(76 -14 112)	(8 -128 74)
	128 178 20	-24 30 36		-170 54 -256	50 110 16
	310 450 46	(414 - 288 234)		(-18 -26 -10)	(98 280 2)
5.	(-273 129 -501)	(-246 -111 -243)	20.	(36 4 -72)	(92 -8 44)
	-783 -264 144	0 -69 -81		140 172 8	-176 12 -84
	(-264 -87 33)	159 -210 -189		(28 48 -20)	108 -48 12
6.	(-271 -175 -149)	(-478 797 -511)	21.	(-182 28 112)	(-616 1498 -742)
	-9 186 -86	390 -369 317		-224 308 -322	644 -882 630
	(836 651 -13)	(973 -1266 749)		(882 -476 -98)	(1680 –1820 1526)

7.	36 38 56 -202 222 -368 346 -454 546	$ \begin{pmatrix} -160 & -48 & -178 \\ 286 & 6 & 360 \\ 734 & -4 & 958 \end{pmatrix} $	22.	$ \begin{pmatrix} -51 & 58 & 6 \\ -178 & 175 & -214 \\ 520 & -534 & 451 \end{pmatrix} $	$ \begin{pmatrix} -295 & 340 & -376 \\ 394 & -261 & 456 \\ 1002 & -546 & 1131 \end{pmatrix} $
8.	3704 -48 1060 -512 472 -124 -780 720 -164	(2644 1164 2228 560 1636 -180 372 1428 -268	23.	$ \begin{pmatrix} 249 & 129 & 153 \\ -315 & 372 & -522 \\ 228 & -567 & 675 \end{pmatrix} $	$ \begin{pmatrix} 12 & -213 & -81 \\ 234 & 177 & 351 \\ 603 & 252 & 1107 \end{pmatrix} $
9.	(7672 2014 1312 -2222 26 -1780 2874 -182 1538	(7448 1900 866 -1594 222 -900 -3258 400 -1510	24.	906 292 408 -568 124 -814 -554 0 -518	(776 58 302 -224 258 -282 -480 540 -522
10.	(2935 877 739 -1145 108 -1240 -1356 -47 -955	(2762 161 509 -688 275 -545 -1441 538 -949	25.	$ \begin{pmatrix} -176 & 48 & 224 \\ -272 & 400 & -416 \\ 944 & -672 & -304 \end{pmatrix} $	$ \begin{pmatrix} -704 & 1936 & -848 \\ 736 & -1136 & 720 \\ 1968 & -2192 & 1760 \end{pmatrix} $
11.	52 112 88 -236 324 -364 456 -884 704		26.	124 652 16 -548 540 -160 -516 424 -148	$ \begin{pmatrix} 292 & 244 & 428 \\ -952 & 212 & -116 \\ -220 & 76 & 8 \end{pmatrix} $
12.		$ \begin{pmatrix} -316 & 339 & -337 \\ 238 & -159 & 195 \\ 623 & -652 & 487 \end{pmatrix} $	27.	$ \begin{pmatrix} 35 & -29 & 43 \\ -89 & 64 & -84 \\ 136 & -99 & 165 \end{pmatrix} $	$ \begin{pmatrix} -50 & -55 & -47 \\ 108 & 45 & 107 \\ 247 & 124 & 269 \end{pmatrix} $
13.	(223 66 164 -296 229 -494 56 -180 281	$\begin{pmatrix} 73 & -194 & 46 \\ 106 & 217 & 126 \\ 276 & 418 & 443 \end{pmatrix}$	28.	$ \begin{pmatrix} -32 & -34 & -16 \\ 154 & 194 & -4 \\ -34 & 10 & -74 \end{pmatrix} $	$ \begin{pmatrix} 168 & 36 & 106 \\ -234 & -18 & -124 \\ 6 & -72 & -62 \end{pmatrix} $
14.	942 408 720 -620 -240 -926 -1334 -496 -2250	808 334 546 -496 -138 -854 -1116 -268 -2218	29.	$ \begin{pmatrix} 107 & 238 & 114 \\ -186 & 346 & -299 \\ 259 & -1268 & 523 \end{pmatrix} $	$ \begin{pmatrix} -168 & 101 & -221 \\ 336 & -191 & 453 \\ 956 & -396 & 1335 \end{pmatrix} $
15.	$ \begin{pmatrix} -45 & 117 & 63 \\ -221 & 252 & -284 \\ 604 & 871 & 441 \end{pmatrix} $		30.	307 1023 835 1361 -484 -1528 -1700 -615 -2127	2982 1105 729 -1008 -343 -865 -1993 -664 -2243

Контрольные вопросы

- 1. Что называется матрицей?
- 2. Какие матрицы называются равными?
- 3. Что называется главной диагональю матрицы?
- 4. Какая матрица называется диагональной?
- 5. Как найти сумму и разность матриц?
- 6. Правило умножения матрицы на число.
- 7. В чем состоит обязательное условие существования произведения матриц?

Нахождение обратной матрицы

Цель: Проверить умения нахождения миноров, алгебраических дополнений и определителей. Правило вычисления обратной матрицы.

$$A = \begin{pmatrix} \kappa_1 & -2 & -1 \\ 2 & 1 & 2 \\ 3 & -\kappa_2 & 4 \end{pmatrix}$$
. Найти

Задания. Дана матрица

 $a)A^{-1}$ и проверить, что $A \cdot A^{-1} = A^{-1} \cdot A = E$

$$\delta A + A^{-1}$$

Вариант	κ_1	κ_2	Вариант	κ_1	κ_2
1	3	-2	16	4	-1
2	4	1	17	5	1
3	3	-4	18	2	0
4	2	1	19	-2	1
5	3	-3	20	2	-2
6	1	5	21	0	7
7	-2	3	22	-1	4
8	6	-2	23	-3	3
9	-6	1	24	-4	1
10	-5	1	25	0	8
11	-2	4	26	4	-2
12	1	3	27	-1	3
13	-3	2	28	2	-3
14	-4	-1	29	-2	5
15	-1	5	30	-5	-1

Ответы

		0124121		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c cccc} 4 \\ \frac{1}{21} \begin{pmatrix} 6 & 9 & -3 \\ -2 & 11 & -6 \\ -5 & -4 & 6 \end{pmatrix} \end{array} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccc} 9 & & & & & \\ \frac{1}{27} \begin{pmatrix} -6 & -9 & 3 \\ 2 & 21 & -10 \\ 5 & 12 & 2 \end{pmatrix} \end{array} $	$ \begin{array}{c cccc} 10 \\ \frac{1}{21} \begin{pmatrix} -6 & -9 & 3 \\ 2 & 17 & -8 \\ 5 & 11 & 1 \end{pmatrix} \end{array} $
$ \begin{array}{c ccccc} 11 & & & \\ \frac{1}{9} \begin{pmatrix} -12 & -12 & 3 \\ 2 & 5 & -2 \\ 11 & 14 & -2 \end{pmatrix} \end{array} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccc} 13 \\ \frac{1}{13} \begin{pmatrix} -8 & -10 & 3 \\ 2 & 9 & -4 \\ 7 & 12 & -1 \end{pmatrix} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c cccc} 17 \\ \frac{1}{39} \begin{pmatrix} 6 & 9 & -3 \\ -2 & 23 & -12 \\ -5 & -1 & 9 \end{pmatrix} $	$ \begin{array}{c ccccc} 18 & & & & & & & & & & \\ \frac{1}{15} \begin{pmatrix} 4 & 8 & -3 \\ -2 & 11 & -6 \\ -3 & -6 & 6 \end{pmatrix} $	$ \begin{array}{c ccccc} 19 \\ \frac{1}{3} \begin{pmatrix} -6 & -9 & 3 \\ 2 & 5 & -2 \\ 5 & 8 & -2 \end{pmatrix} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
21 (18 15 -3)	22 (12 12 -3)	23	24	25
$\begin{bmatrix} \frac{1}{21} & -2 & 3 & -2 \\ -17 & -6 & 4 \end{bmatrix}$	$\begin{bmatrix} \frac{1}{3} & -2 & -1 & 0 \\ -11 & -10 & 3 \end{bmatrix}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{1}{15} \begin{pmatrix} -6 & -9 & 3\\ 2 & 13 & -6\\ 5 & 10 & 0 \end{pmatrix}$	$\begin{array}{c ccccc} \frac{1}{23} & -2 & 3 & -2 \\ -19 & -6 & 4 \end{array}$

Контрольные вопросы

- 1. Какая матрица называется невырожденной?
- 2. Транспонированная матрица.
- 3. Какая матрица называется обратной по отношению к данной?
- 4. Каков порядок вычисления обратной матрицы?

Практическая работа №2

Системы линейных однородных уравнений. Решение систем линейных уравнений и сводящихся к ним

Цель: Проверить умения учащихся решать системы линейных уравнений по правилу Крамера, с помощью обратной матрицы (матричным методом), методом Гаусса.

Задание:

- 1. Решить системы уравнений:
- а) по формуле Крамера;
- б) с помощью обратной матрицы (матричным методом);
- в) Методом Гаусса.

$$\begin{array}{l} 2x + y + 3z = 7, \\ 2x + 3y + z = 1, \\ 3x + 2y + z = 6. \end{array} \\ 1.2 \begin{cases} 2x - y + 2z = 3, \\ x + y + 2z = -4, \\ 4x + y + 4z = -3. \end{cases} \\ 1.3 \begin{cases} 3x - y + z = 12, \\ x + 2y + 4z = 6, \\ 5x + y + 2z = 3. \end{cases} \\ 2x - y + 3z = -4, \\ 1.4 \begin{cases} 2x - y + 3z = -1, \\ x + 3y + 3z = 11, \\ x - 2y + 2z = -7. \end{cases} \\ 1.5 \begin{cases} 3x - 2y + 4z = 12, \\ 3x + 4y - 2z = 6, \\ 2x - y - z = -9. \end{cases} \\ 1.6 \begin{cases} 8x + 3y - 6z = -4, \\ 4x + y - 3z = -5. \end{cases} \\ 2x + 3y + 4z = 33, \\ 4x + y - 3z = -5. \end{cases} \\ 1.10 \begin{cases} x + 4y - z = 6, \\ 5y + 4z = -20, \\ 3x - 2y + 5z = -22. \end{cases} \\ 1.11 \begin{cases} 3x - 2y + 4z = 21, \\ 4x + 11z = 39. \end{cases} \\ 1.12 \begin{cases} 2x + 3y + 4z = 12, \\ 7x - 5y + z = -33, \\ 4x + z = -7. \end{cases} \\ 2x - y - z = 10. \end{cases} \\ 1.13 \begin{cases} 3x - 2y + 4z = 21, \\ 2x - y - z = 10. \end{cases} \\ 1.14 \begin{cases} 2x + 3y + 4z = 12, \\ 2x - y - z = 10. \end{cases} \\ 2x - y + 3z = -1. \end{cases} \\ 2x - y + 2z = 4, \\ 2x - y + 2z = 4. \end{cases} \\ 1.15 \begin{cases} 2x - y - 3z = -9, \\ x + 5y + z = 20, \\ 3x + 4y + 2z = 1, \\ x + y + 2z = 1, \end{cases} \\ 1.16 \begin{cases} 2x - y - 3z = -9, \\ x + 5y + z = -3. \end{cases} \\ 1.17 \begin{cases} 2x - y - 3z = 0, \\ 3x + 4y + 2z = 1, \\ x + 5y + z = -3. \end{cases} \\ 1.18 \begin{cases} 3x - y + z = 11, \\ 3x - 4y - 2z = 1, \end{cases} \\ 1.19 \begin{cases} 3x - y + z = 11, \\ 3x - 4y - 2z = 1, \end{cases} \\ 1.20 \begin{cases} 3x - y + z = -11, \\ 5x + y + 2z = 8, \\ x + 2y + 4z = 16. \end{cases} \end{cases} \\ 1.21 \begin{cases} 3x - y + z = 9, \\ 3x + 4y + 2z = 1, \\ 3x + 4y + 2z = 1, \end{cases} \\ 1.21 \begin{cases} 3x - y + z = 9, \\ 3x + 4y + 2z = 1, \end{cases} \\ 1.21 \begin{cases} 3x - y + z = 9, \\ 3x + 4y + 2z = 1, \end{cases} \\ 1.21 \begin{cases} 3x - y + z = 9, \\ 3x + 4y + 2z = 1, \end{cases} \\ 1.21 \begin{cases} 3x - y + z = 9, \\ 3x + 4y + 2z = 1, \end{cases} \\ 1.21 \begin{cases} 3x - y + z = 1, \\ 3x + 4y + 2z = 1, \end{cases} \\ 1.21 \begin{cases} 3x - y + z = 1, \\ 3x + 4y + 2z = 1, \end{cases} \\ 1.21 \begin{cases} 3x - y + z = 1, \\ 3x + 4y + 2z = 1, \end{cases} \\ 1.21 \begin{cases} 3x - y + z = 1, \\ 3x + 4y + 2z = 1, \end{cases} \\ 1.21 \begin{cases} 3x - y + z = 1, \\ 3x + 4y + 2z = 1, \end{cases} \\ 2x - y - 3z = 0, \end{cases} \\ 1.21 \begin{cases} 3x - y + z = 1, \end{cases} \\ 3x - y + z = 1, \end{cases} \end{cases}$$

$$2x + 3y + z = 4,$$

$$2x + y + 3z = 0,$$

$$3x + 2y + z = 1.$$

$$3x + 4y - 2z = 11,$$

$$2x - y - z = 4,$$

$$3x - 2y + 4z = 11.$$

$$5x + 2y - 4z = -16,$$

$$1.28.$$

$$x + 3z = -6,$$

2x-3y+z=9.

 $3.19. \begin{cases} x + 2y - 5z = 0, \end{cases}$

3x + y + z = 0.

3x + 5y - z = 0

3.22.\{ 2x + 4y - 3z = 0,

x - 3y + z = 0.

1.23.
$$\begin{cases} 2x + 3y + z = 12, \\ 2x + y + 3z = 16, \\ 3x + 2y + z = 8. \end{cases}$$
1.24.
$$\begin{cases} x - 2y + 3z = 14, \\ 2x + 3y - 4z = -16, \\ 3x - 2y - 5z = -8. \end{cases}$$
1.26.
$$\begin{cases} x + 5y - 6z = -15, \\ 3x + y + 4z = 13, \\ 2x - 3y + z = 9. \end{cases}$$
1.27.
$$\begin{cases} 4x - y = -6, \\ 3x + 2y + 5z = -14, \\ x - 3y + 4z = -19. \end{cases}$$
1.29.
$$\begin{cases} x + 4y - z = -9, \\ 4x - y + 5z = -2, \\ 3y - 7z = -6. \end{cases}$$
1.30.
$$\begin{cases} 7x + 4y - z = 13, \\ 3x + 2y + 3z = 3, \\ 2x - 3y + z = -10. \end{cases}$$

(x+3y+2z=0,

3x - 5y + 4z = 0.

3x - y - 3z = 0

x + y + 3z = 0.

x + 7y - z = 0.

3.12.{2x + 3y + 2z = 0,

3.15. $\begin{cases} 2x + 5y + z = 0, \end{cases}$

(x-2y-z=0,

3x - 2y + 5z = 0.

 $\int x + 4y - 3z = 0$,

5x - 5v + 4z = 0

3.3.\{ 2x - v + 3z = 0,

3.6. $\begin{cases} 2x + 3y + z = 0, \end{cases}$

3.9. 3x + v + 3z = 0,

2. Решить однородную систему линейных алгебраических уравнений.

2. Решить однородную систему линейных алгеораических ульнейных
$$= 0$$
, $= 0$,

$$\begin{cases} 2x + 4y - 5z = 0. \\ x + 2y + 3z = 0, \\ 2x - y - z = 0, \\ 3x + 3y + 2z = 0. \end{cases}$$

$$\begin{cases} 3x + 2y - z = 0, \\ 4x - 2y + 5z = 0. \end{cases}$$

$$\begin{cases} 3x + 2y - z = 0, \\ 4x - 2y + 5z = 0. \end{cases}$$

$$\begin{cases} 3x + 2y - z = 0, \\ 4x - 2y + 5z = 0. \end{cases}$$

$$\begin{cases} 3x + 2y - z = 0, \\ 4x - 2y + 5z = 0. \end{cases}$$

$$\begin{cases} 3x - 2y + 3z = 0, \\ 4x + 3y + 4z = 0. \end{cases}$$

$$\begin{cases} 3x - 2y + z = 0, \\ 2x - 3y + 2z = 0, \\ 4x + y - 4z = 0. \end{cases}$$

$$\begin{cases} 3x - 2y + 3z = 0, \\ 3x - 2y + 3z = 0, \\ 3x - 2y + 3z = 0, \\ x - y + 2z = 0. \end{cases}$$

$$\begin{cases} 3x - 2y + 3z = 0, \\ 3x - 2y + 3z = 0, \\ 3x - 2y + 3z = 0, \end{cases}$$

$$\begin{cases} 3x - 2y + 3z = 0, \\ 4x - 2y + 3z = 0, \end{cases}$$

$$\begin{cases} 3x - 2y + 2z = 0. \end{cases}$$

$$\begin{cases} 3x - 2y + 2z = 0. \end{cases}$$

$$\begin{cases} 3x - 2y + 2z = 0. \end{cases}$$

$$\begin{cases} 3x - 2y + 2z = 0. \end{cases}$$

$$\begin{cases} 3x - 2y + 2z = 0. \end{cases}$$

$$\begin{cases} 3x - 2y + 2z = 0. \end{cases}$$

$$\begin{cases} 3x - 2y + 3z = 0, \\ 3x - 2y + 3z = 0, \end{cases}$$

$$\begin{cases} 3x - 2y + 3z = 0. \end{cases}$$

$$\begin{cases} 3x - 2y + 3z = 0. \end{cases}$$

$$\begin{cases} 3x - 2y + 3z = 0. \end{cases}$$

$$\begin{cases} 3x - 2y + 3z = 0. \end{cases}$$

$$\begin{cases} 3x - 2y + 3z = 0. \end{cases}$$

$$\begin{cases} 3x - 2y + 3z = 0. \end{cases}$$

$$\begin{cases} 3x - 2y + 3z = 0. \end{cases}$$

$$\begin{cases} 3x - 2y + 3z = 0. \end{cases}$$

$$\begin{cases} 3x - 2y + 3z = 0. \end{cases}$$

$$\begin{cases} 3x - 2y + 3z = 0. \end{cases}$$

$$\begin{cases} 3x - 2y + 3z = 0. \end{cases}$$

$$\begin{cases} 3x - 2y + 3z = 0. \end{cases}$$

$$\begin{cases} 3x - 2y + 3z = 0. \end{cases}$$

$$\begin{cases} 3x - 2y + 3z = 0. \end{cases}$$

$$\begin{cases} 3x - 2y + 3z = 0. \end{cases}$$

$$\begin{cases} 3x - 2y + 3z = 0. \end{cases}$$

$$\begin{cases} 3x - 2y + 3z = 0. \end{cases}$$

$$\begin{cases} 3x - 2y + 3z = 0. \end{cases}$$

$$\begin{cases} 3x - 2y + 3z = 0. \end{cases}$$

$$\begin{cases} 3x - 2y + 3z = 0. \end{cases}$$

$$\begin{cases} 3x - 2y + 3z = 0. \end{cases}$$

$$\begin{cases} 3x - 2y + 3z = 0. \end{cases}$$

$$\begin{cases} 3x - 2y + 3z = 0. \end{cases}$$

$$\begin{cases} 3x - 2y + 3z = 0. \end{cases}$$

$$\begin{cases} 3x - 2y + 3z = 0. \end{cases}$$

$$\begin{cases} 3x - 2y + 3z = 0. \end{cases}$$

$$\begin{cases} 3x - 2y + 3z = 0. \end{cases}$$

$$\begin{cases} 3x - 2y + 3z = 0. \end{cases}$$

$$\begin{cases} 3x - 2y + 3z = 0. \end{cases}$$

$$\begin{cases} 3x - 2y + 3z = 0. \end{cases}$$

$$\begin{cases} 3x - 2y + 3z = 0. \end{cases}$$

$$\begin{cases} 3x - 2y + 3z = 0. \end{cases}$$

$$\begin{cases} 3x - 2y + 3z = 0. \end{cases}$$

$$\begin{cases} 3x - 2y + 3z = 0. \end{cases}$$

$$\begin{cases} 3x - 2y + 3z = 0. \end{cases}$$

$$\begin{cases} 3x - 2y + 3z = 0. \end{cases}$$

$$\begin{cases} 3x - 2y + 3z = 0. \end{cases}$$

$$\begin{cases} 3x - 2y + 3z = 0. \end{cases}$$

$$\begin{cases} 3x - 2y + 3z = 0. \end{cases}$$

$$\begin{cases} 3x - 2y + 3z = 0. \end{cases}$$

$$\begin{cases} 3x - 2y + 3z = 0. \end{cases}$$

$$\begin{cases} 3x - 2y + 3z = 0. \end{cases}$$

$$\begin{cases} 3x - 2y + 3z = 0. \end{cases}$$

$$\begin{cases} 3x - 2y + 3z = 0. \end{cases}$$

$$\begin{cases} 3x - 2y + 3z = 0. \end{cases}$$

$$\begin{cases} 3x - 2y + 3z = 0. \end{cases}$$

$$\begin{cases} 3x - 2y + 3z = 0. \end{cases}$$

$$\begin{cases} 3x - 2y + 3z = 0. \end{cases}$$

$$\begin{cases} 3x - 2y + 3z = 0. \end{cases}$$

$$\begin{cases} 3x - 2y + 3z = 0. \end{cases}$$

$$\begin{cases} 3x - 3y - 3z = 0. \end{cases}$$

$$\begin{cases} 3x - 3y - 3z = 0. \end{cases}$$

$$\begin{cases} 3x - 3y - 3z = 0. \end{cases}$$

$$\begin{cases} 3x - 3y - 3z = 0. \end{cases}$$

$$\begin{cases} 3x - 3y -$$

$$3.25. \begin{cases} x + 2y - 4z = 0, \\ 2x - y - 3z = 0, \\ x + 3y + z = 0. \end{cases}$$

$$3.26. \begin{cases} 7x - 6y + z = 0, \\ 4x + 5y = 0, \\ x - 2y + 3z = 0. \end{cases}$$

$$3.27. \begin{cases} 5x - 4y + 2z = 0, \\ 3x - 2y = 0, \\ 4x + y - 3z = 0. \end{cases}$$

$$3.28. \begin{cases} 6x + 5y - 4z = 0, \\ x + y - z = 0, \\ 3x + 4y + 3z = 0. \end{cases}$$

$$3.29. \begin{cases} 8x + y - 3z = 0, \\ x - +5y + z = 0, \\ 4x - 7y + 2z = 0. \end{cases}$$

$$3.30. \begin{cases} x + 7y - 3z = 0, \\ 3x - 5y + z = 0, \\ 3x + 4y - 2z = 0. \end{cases}$$

Ответы

вариант	1	2	3	4	5
Δ	12,36,24,12	-6,12,18,2	-12,36,24,-12	8,-8,28,4	-60,0,240,-300
x, y, z	3, 2, 1	-2, 3, -1/3	3, -2, 1	-1, 3,5, 0,5	0, -3, 5
вариант Δ	6 -1,-1,-6,-5	7 1,3,-6,-1	8 -261, -1827, 1305, -261	9 61,-122,244,61	10 96,96,0,-480
x, y, z	1 ,6, 5	3, -6, -1	7, 5, 1	-2, 4, 1	1, 0,-5
вариант Δ	11 -60,-300,60,-60	12 58,174,116,0	13 -6,-6,6,-24	6,0,12,6	15 -6,-6,-12,-24
x, y, z	5, -1, 1	3, 2, 0	1, -1, 4	0, 2, 1	1, 2, 4
вариант Δ	16 44,-44,176,44	17 -44,-44,44,-44	18 -49,49,-245,294	19 49,-109,-651,782	20 27,0,270,-27
x, y, z	-1, 4, 1	1, -1, 1	-1, 5, -6	-109/49, -93/7, 782/49	0, 10, -1
вариант Δ	21 27,9,-60,156	22 12,-12,24,0	23 12,-12,36,60	24 -58,-58,116,-174	25 -60,-180,-60,-60
x, y, z	1/3,-20/9,52/9	-1, 2, 0	-1, 3, 5	1, -2, 3	3, 1, 1
вариант Δ	26 104,208,-104, 208	27 99,-99,198,-297	28 67,-150,-329,- 84	29 92, -92, -184, 0	30 102,0,306,-102
x, y, z	2, -1, 2	-1, 2, -3	-150/67, -329/67, -84/67	-1, -2, 0	0, 3, -1

Тест

Тест по теме «Линейная алгебра»
$$A = \begin{pmatrix} 4 & 1 \\ -2 & -3 \end{pmatrix}, \text{ то матрица } 5A \text{ имеет вид:}$$

$$a) \begin{pmatrix} 24 & 10 \\ -12 & -30 \end{pmatrix} b) \begin{pmatrix} 20 & 5 \\ -10 & -15 \end{pmatrix} c) \begin{pmatrix} -20 & 5 \\ -10 & -3 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 0 & 4 \\ 3 & 1 & 2 \\ -4 & 1 & 2 \end{pmatrix} u B = \begin{pmatrix} 2 & 1 & -1 \\ 3 & 0 & 1 \\ 5 & 2 & -3 \end{pmatrix}, \text{ то матрица } 2A + B \text{ имеет вид:}$$
 1. Если матрицы
$$\begin{pmatrix} 4 & 1 & 7 \end{pmatrix} \qquad \begin{pmatrix} -4 & 1 & -7 \end{pmatrix} \qquad \begin{pmatrix} -1 & 8 & 4 \end{pmatrix}$$

a)
$$\begin{pmatrix} 4 & 1 & 7 \\ 9 & 2 & 5 \\ -3 & 4 & 1 \end{pmatrix}$$
 b) $\begin{pmatrix} -4 & 1 & -7 \\ 9 & 1 & 5 \\ -3 & 1 & 2 \end{pmatrix}$ c) $\begin{pmatrix} -1 & 8 & 4 \\ -3 & 1 & -2 \\ 4 & 1 & 0 \end{pmatrix}$

$$A = \begin{pmatrix} 4 & 1 & 7 \\ 9 & 2 & 5 \\ -3 & 4 & 2 \end{pmatrix}$$

2. Для матрицы диагонали

указать сумму элементов, расположенных на главной

$$A = \begin{pmatrix} 4 & 1 & 7 \\ 9 & 2 & 5 \\ -3 & 4 & 2 \end{pmatrix}$$

3. Для матрицы ной диагонали указать сумму элементов, расположенных на побоч-

5. При умножении матрицы A на матрицу B должно соблюдаться условие:

- а) число строк матрицы A равно числу строк матрицы B
- b) число строк матрицы A равно числу столбцов матрицы B
- c) число столбцов матрицы A равно числу строк матрицы B
- 6. Квадратная матрица называется диагональной, если:
 - а) элементы, лежащие на главной диагонали равны нулю
 - b) элементы, не лежащие на главной диагонали равны нулю
 - а) элементы, лежащие на побочной диагонали равны нулю

7. При каком значении
$$\alpha$$
 определитель
$$\begin{vmatrix} 1 & 4 & 5 \\ 0 & 4 & 2 \\ 0 & 0 & 2\alpha - 1 \end{vmatrix}$$
 равен нулю?

$$a)2 b)12 c) -2$$

8. Если поменять местами две строки (два столбца) квадратной матрицы, то определитель:

- а) не изменится
 - b) станет равным нулю
 - с) поменяет знак

9. Чему равен минор
$$M_{21}$$
 определителя $\begin{bmatrix} -1 & 2 & 0 \\ 3 & 7 & -1 \\ 5 & 4 & 2 \end{bmatrix}$

a) 4 b) 0

$$\begin{bmatrix} -1 & 2 & 0 \\ 3 & 7 & -1 \\ 5 & 4 & 2 \end{bmatrix}$$
 ?

$$\begin{vmatrix} 3 & 7 & -1 \\ 5 & 4 & 2 \end{vmatrix}$$

$$\begin{vmatrix} -1 & 2 & 0 \\ 3 & 7 & -1 \\ 5 & 4 & 2 \end{vmatrix}$$
?

11. Чему равно алгебраическое дополнение A_{21} определителя

$$\begin{vmatrix} -1 & 2 & 0 \\ 3 & 7 & -1 \\ 5 & 4 & 2 \end{vmatrix}$$

12. Чему равно алгебраическое дополнение а) 4 в) -2 с) 0 $\begin{vmatrix} -1 & 2 & 0 \\ 3 & 7 & -1 \\ 5 & 4 & 2 \end{vmatrix}$,

$$\begin{cases} 3x - y = 5 \\ -2x + y + z = 0 \\ 2x - y + 4z = 15 \end{cases}$$

13. Чему равен главный определитель системы уравнений

 $A = \begin{pmatrix} 2 & 0 \\ 3 & -4 \end{pmatrix}_{\mathbf{U}} \quad D = \begin{pmatrix} 1 & 2 \\ -2 & 0 \end{pmatrix},$ то определитель матрицы $A \cdot D$ равен: a) -32 b) 32 c) -16

$$\Delta = \begin{vmatrix} -3 & -2 & 1 & 0 \\ 2 & -2 & 1 & 4 \\ 4 & 0 & -1 & 2 \\ 3 & 1 & -1 & 4 \end{vmatrix}$$

15. Найти минор для элемента a_{32} определителя

$$a)2$$
 $b)20$ $c)-20$

$$\Delta = \begin{vmatrix} -3 & -2 & 1 & 0 \\ 2 & -2 & 1 & 4 \\ 4 & 0 & -1 & 2 \\ 3 & 1 & -1 & 4 \end{vmatrix}$$

16. Найти алгебраическое дополнение для элемента a_{32} определителя

$$a)2$$
 $b)20$ $c)-20$

$$\Delta = \begin{vmatrix} -4 & 0 & 1 \\ 2 & -1 & 3 \\ 3 & 2 & 2 \end{vmatrix}$$

17. Найти минор для элемента a_{23} определителя

$$\frac{a) - 8}{}$$

b) 8
$$c$$
) -5

$$\Delta = \begin{vmatrix} -4 & 0 & 1 \\ 2 & -1 & 3 \\ 3 & 2 & 2 \end{vmatrix}$$

18. Найти алгебраическое дополнение для элемента a_{23} определителя

$$a) - 8$$

$$a) - 8$$
 $b) 8 $c) - 5$$

Самостоятельная работа

Вариант 1

$$A = \begin{pmatrix} 2 & 3 & 0 \\ -2 & 1 & 8 \\ 2 & 4 & 3 \end{pmatrix} \quad B = \begin{pmatrix} -1 & 0 & 3 \\ 2 & 4 & 1 \\ 1 & 3 & 0 \end{pmatrix}$$

1. Найти матрицу C=A+3B, если

$$C = \begin{pmatrix} -1 & 3 & 9 \\ 4 & 13 & 11 \\ 5 & 13 & 3 \end{pmatrix}$$

Ответ:

- 2. Решить систему линейных уравнений методом обратной матрицы.
- 3. Решить систему линейных уравнений по формулам Крамера.
- 4. Решить систему линейных уравнений методом Гаусса.

$$\begin{cases} x_1 + 2x_2 - x_3 = 1, \\ 2x_1 - x_2 + x_3 = 5, \\ 3x_1 + 2x_2 + x_3 = 7. \end{cases}$$

Ответ: (2;0;1)

Вариант 2

$$A = \begin{pmatrix} 2 & 3 & 0 \\ -2 & 1 & 8 \\ 2 & 4 & 3 \end{pmatrix} \quad B = \begin{pmatrix} -1 & 0 & 3 \\ 2 & 4 & 1 \\ 1 & 3 & 0 \end{pmatrix}$$

1. Найти матрицу C=2A-B, если

$$C = \begin{pmatrix} 5 & 6 & -3 \\ -6 & -2 & 15 \\ 3 & 5 & 6 \end{pmatrix}$$

Ответ:

- 2. Решить систему линейных уравнений методом обратной матрицы.
- 3. Решить систему линейных уравнений по формулам Крамера.
- 4. Решить систему линейных уравнений методом Гаусса.

$$\begin{cases} x_1 - x_2 + 2x_3 = -2, \\ x_1 + 2x_2 - x_3 = 7, \\ 2x_1 + x_2 - 3x_3 = 5. \end{cases}$$

Ответ: (1;3;0)

Вариант 3

$$A = \begin{pmatrix} 2 & 3 & 0 \\ -2 & 1 & 8 \\ 2 & 4 & 3 \end{pmatrix} \quad B = \begin{pmatrix} -1 & 0 & 3 \\ 2 & 4 & 1 \\ 1 & 3 & 0 \end{pmatrix}$$

1. Найти матрицу C=3A+B, если

$$C = \begin{pmatrix} 5 & 9 & 3 \\ -4 & 7 & 25 \\ 7 & 15 & 9 \end{pmatrix}$$

Отрет

- 2. Решить систему линейных уравнений методом обратной матрицы.
- 3. Решить систему линейных уравнений по формулам Крамера.
- 4. Решить систему линейных уравнений методом Гаусса.

$$\begin{cases} x_1 + 3x_2 - 2x_3 = 4, \\ x_1 + 4x_2 - x_3 = 7, \\ 2x_1 + x_2 + x_3 = 3. \end{cases}$$

Ответ: (0;2;1)

Вариант 4

$$A = \begin{pmatrix} 2 & 3 & 0 \\ -2 & 1 & 8 \\ 2 & 4 & 3 \end{pmatrix} \quad B = \begin{pmatrix} -1 & 0 & 3 \\ 2 & 4 & 1 \\ 1 & 3 & 0 \end{pmatrix}$$

1. Найти матрицу C=A-4B, если

$$C = \begin{pmatrix} 6 & 3 & -12 \\ -10 & -15 & 4 \\ -2 & -8 & 3 \end{pmatrix}$$

Ответ:

- 2. Решить систему линейных уравнений методом обратной матрицы.
- 3. Решить систему линейных уравнений по формулам Крамера.
- 4. Решить систему линейных уравнений методом Гаусса.

$$\begin{cases} x_1 + 2x_2 - x_3 = 3, \\ x_1 + 3x_2 + x_3 = 6, \\ 2x_1 - x_2 + x_3 = 4. \end{cases}$$

Ответ: (2;1;1)

Вариант 5

$$A = \begin{pmatrix} 2 & 3 & 0 \\ -2 & 1 & 8 \\ 2 & 4 & 3 \end{pmatrix}, B = \begin{pmatrix} -1 & 0 & 3 \\ 2 & 4 & 1 \\ 1 & 3 & 0 \end{pmatrix}.$$

1. Найти матрицу C=4A-B, если

$$C = \begin{pmatrix} 9 & 12 & -3 \\ -10 & 0 & 31 \\ 7 & 13 & 12 \end{pmatrix}$$

Ответ:

- 2. Решить систему линейных уравнений методом обратной матрицы.
- 3. Решить систему линейных уравнений по формулам Крамера.
- 4. Решить систему линейных уравнений методом Гаусса.

$$\begin{cases} x_1 + x_2 - 3x_3 = 2, \\ x_1 + 2x_2 + x_3 = 3, \\ 3x_1 + 7x_2 + x_3 = 10. \end{cases}$$

Ответ: (1;1;0)

Вариант 6

$$A = \begin{pmatrix} 2 & 3 & 0 \\ -2 & 1 & 8 \\ 2 & 4 & 3 \end{pmatrix} \quad B = \begin{pmatrix} -1 & 0 & 3 \\ 2 & 4 & 1 \\ 1 & 3 & 0 \end{pmatrix}$$

1. Найти матрицу C=A+2B, если

$$C = \begin{pmatrix} 0 & 3 & 6 \\ 2 & 9 & 10 \\ 4 & 10 & 3 \end{pmatrix}$$

Ответ

- 2. Решить систему линейных уравнений методом обратной матрицы.
- 3. Решить систему линейных уравнений по формулам Крамера.
- 4. Решить систему линейных уравнений методом Гаусса.

$$\begin{cases} x_1 + x_2 + x_3 = 3, \\ 2x_1 - x_2 + x_3 = 1, \\ 2x_1 + 3x_2 - x_3 = 1. \end{cases}$$

Ответ: (0;1;2)

Раздел. 2 Элементы аналитической геометрии

Устный опрос

- 1. Что называется вектором?
- 2. Какие векторы называются коллинеарными?
- 3. Что называется координатами вектора?
- 4. Как найти координаты вектора, заданного двумя точками?
- 5. Как найти длину вектора, заданного своими координатами?
- 6. Запишите формулы деления отрезка в данном отношении.
- 7. Дать определение проекции вектора на ось и перечислить ее свойства.
- 8. Дать определение скалярного, векторного, смешанного произведения векторов.

Практическая работа № 3

Действия над векторами в координатах. Применение скалярного и векторного произведения векторов для решения метрических задач

Цель: Проверить знания и умения по нахождению: координат вектора, операций над векторами, модуля вектора и скалярного произведения.

Задания

- 1. По координатам точек А, В и С для указанных векторов найти:
 - а) Координаты векторов a = AB, b = BC, c = AC, d = BA, p = CA
 - b) Модуль вектора $\vec{\kappa} = 3\vec{a} + \vec{e} \vec{d}$
 - с) Скалярное произведение векторов а и b;
 - \mathbf{d}) Проекцию вектора \mathbf{c} на вектор \mathbf{d} ;
 - e) Координаты точки М, делящей отрезок ${\bf p}$ в отношении ${m lpha}:{m eta}$

Варианты	Координаты точки А	Координаты точки В	Координаты точки С	α	β
1.	(-2, 1,3)	(3, -6, 2)	(-5, -3, -1)	1	3
2.	(1, 3, 6)	(-3, 4, -5)	(1, -7, 2)	1	2
3.	(7, 2, 1)	(5, 1, -2)	(-3, 4, 5)	2	1
4.	(3, 5, 4)	(-2, 7, -5)	(6, -2, 1)	3	2
5.	(5, 3, 2)	(2, -5, 1)	(-7, 4, -3)	2	3
6.	(11, 1, 2)	(-3, 3, 4)	(-4, -2, 7)	1	2
7.	(9, 5, 3)	(-3, 2, 1)	(4, -7, 4)	3	1
8.	(7, 2, 1)	(3, -5, 6)	(-4, 3, -4)	3	2
9.	(1, 2, 3)	(-5, 3, -1)	(-6, 4, 5)	2	1
10.	(-2, 5, 1)	(3, 2, -7)	(4, -3, 2)	4	1
11.	(3, 1, 2)	(-4, 3, -1)	(2, 3, 4)	2	1
12.	(3, -1, 2)	(-2, 4, 1)	(4, -5, -1)	1	3
13.	(4, 5, 1)	(1, 3, 1)	(-3, -6, 7)	3	4
14.	(1, -3, 1)	(-2, -4, 3)	(0, -2, 3)	2	3
15.	(5, 7, -2)	(-3, 1, 3)	(1, -4, 6)	4	3

16.	(-1, 4, 3)	(3, 2, -4)	(-2, -7, 1)	1	3
17.	(5, 4, 1)	(-3, 5, 2)	(2, -1, 3)	3	1
18.	(2, -1, 4)	(-3, 0, -2)	(4, 5, -3)	2	1
19.	(-1, 1, 2)	(2, -3, -5)	(-6, 3, -1)	1	2
20.	(1, 3, 4)	(-2, 5, 0)	(3, -2, -4)	2	3
21.	(1, -1, 1)	(-5, -3, 1)	(2, -1, 0)	3	2
22.	(3, 1, 2)	(-7, -2, -4)	(-4, 0, 3)	2	1
23.	(-3, 0, 1)	(2, 7, -3)	(-4, 3, 5)	1	3
24.	(5, 1, 2)	(-2, 1, -3)	(4, -3, 5)	2	3
25.	(0, 2, -3)	(4, -3, -2)	(-5, -4, 0)	1	2
26.	(3, -1, 2)	(-2, 3, 1)	(4, -5, -3)	3	4
27.	(5, 3, 1)	(-1, 2, -3)	(3, -4, 2)	1	2
28.	(3, 1, -3)	(-2, 4, 1)	(1, -2, 5)	3	4
29.	(6, 1, -3)	(-3, 2, 1)	(-1, -3, 4)	4	3
30.	(4, 2, 3)	(-3, 1, -8)	(2, -4, 5)	3	2

^{2.} Доказать, что векторы a, b, c образуют базис, и найти координаты вектора d в этом базисе.

Варианты	a	b	c	d	ответ
1.	(5, 4, 1)	(-3, 5, 2)	(2, -1, 3)	(7, 23, 4)	3 <i>i</i> +2 <i>j</i> - <i>k</i>
2.	(2, -1, 4)	(-3, 0, -2)	(4, 5, -3)	(0, 11, -14)	-i+2j+2k
3.	(-1, 1, 2)	(2, -3, -5)	(-6, 3, -1)	(28, -19, -7)	2i+3j-4k
4.	(1, 3, 4)	(-2, 5, 0)	(3, -2, -4)	(13, -5, -4)	2i- j + $3k$
5.	(1, -1, 1)	(-5, -3, 1)	(2, -1, 0)	(-15, -10, 5)	2 <i>i</i> +3 <i>j</i> - <i>k</i>
6.	(3, 1, 2)	(-7, -2, -4)	(-4, 0, 3)	(16, 6, 15)	2 <i>i</i> -2 <i>j</i> + <i>k</i>
7.	(-3, 0, 1)	(2, 7, -3)	(-4, 3, 5)	(-16, 33, 13)	2 <i>i</i> +3 <i>j</i> +4 <i>k</i>
8.	(5, 1, 2)	(-2, 1, -3)	(4, -3, 5)	(15, -15, 24)	-i+3j+4k
9.	(0, 2, -3)	(4, -3, -2)	(-5, -4, 0)	(-19, -5, -4)	2 <i>i</i> - <i>j</i> +3 <i>k</i>
10.	(3, -1, 2)	(-2, 3, 1)	(4, -5, -3)	(-3, 2, -3)	-i+2j+k
11.	(5, 3, 1)	(-1, 2, -3)	(3, -4, 2)	(-9, 34, -20)	2i+4j-5k
12.	(3, 1, -3)	(-2, 4, 1)	(1, -2, 5)	(1, 12, -20)	2 <i>i</i> + <i>j</i> -3 <i>k</i>
13.	(6, 1, -3)	(-3, 2, 1)	(-1, -3, 4)	(15, 6, -17)	i-2j-3k
14.	(4, 2, 3)	(-3, 1, -8)	(2, -4, 5)	(-12, 14, -31)	i-2j-3k
15.	(-2, 1,3)	(3, -6, 2)	(-5, -3, -1)	(31, -6, 22)	2j-3k
16.	(1, 3, 6)	(-3, 4, -5)	(1, -7, 2)	(-2, 17, 5)	2 <i>i</i> + <i>j</i> - <i>k</i>
17.	(7, 2, 1)	(5, 1, -2)	(-3, 4, 5)	(26, 11, 1)	2i+3j+k
18.	(3, 5, 4)	(-2, 7, -5)	(6, -2, 1)	(6, -9, 22)	2i-3j-k
19.	(5, 3, 2)	(2, -5, 1)	(-7, 4, -3)	(36, 1, 15)	5 <i>i</i> +2 <i>j</i> - <i>k</i>
20.	(11, 1, 2)	(-3, 3, 4)	(-4, -2, 7)	(-5, 11, -15)	-i+2j-3k
21.	(9, 5, 3)	(-3, 2, 1)	(4, -7, 4)	(-10, -13, 8)	-i+3j+2k
22.	(7, 2, 1)	(3, -5, 6)	(-4, 3, -4)	(-1, 18, -16)	2 <i>i</i> - <i>j</i> +3 <i>k</i>
23.	(1, 2, 3)	(-5, 3, -1)	(-6, 4, 5)	(-4, 11, 20)	<i>3i-j+2k</i>
24.	(-2, 5, 1)	(3, 2, -7)	(4, -3, 2)	(-4, 22, -13)	3 <i>i</i> +2 <i>j</i> - <i>k</i>
25.	(3, 1, 2)	(-4, 3, -1)	(2, 3, 4)	(14, 14, 20)	2i+4k
26.	(3, -1, 2)	(-2, 4, 1)	(4, -5, -1)	(-5, 11, 1)	-i+5j+2k
27.	(4, 5, 1)	(1, 3, 1)	(-3, -6, 7)	(19, 33, 0)	<i>3i+4j-k</i>
28.	(1, -3, 1)	(-2, -4, 3)	(0, -2, 3)	(-8, -10, 13)	-2i+3j+2k
29.	(5, 7, -2)	(-3, 1, 3)	(1, -4, 6)	(14, 9, -1)	2 <i>i</i> - <i>j</i> + <i>k</i>
30.	(-1, 4, 3)	(3, 2, -4)	(-2, -7, 1)	(6, 20, -3)	<i>i</i> + <i>j</i> -2 <i>k</i>

Контрольные вопросы

- 1. Что называется вектором?
- 2. Какие векторы называются коллинеарными?
- 3. Что называется координатами вектора?
- 4. Как найти координаты вектора, заданного двумя точками?
- 5. Как найти длину вектора, заданного своими координатами?
- 6. Запишите формулы деления отрезка в данном отношении.

Тест для самоконтроля по теме «Векторная алгебра»

- 1. Даны векторы $\vec{a} = (2;4;1)$ и $\vec{c} = (1;2;0)$. Найти координаты суммы векторов.
- a) (3;6;1) b) (0;6;1) c) (1;2;1)
 - $\vec{a} = (2;4;1)$ и $\vec{c} = (1;2;0)$. Найти координаты разности векторов.
- a) (3;6;1) b) (0;6;1) c) (1;2;1)
 - 3. Даны векторы $\vec{a} = (2;4;1)$ $\vec{c} = (1;2;0)$. Найти координаты вектора $\vec{a} + 2\vec{c}$.
- a) (-3;8;1) b) (4;8;1) c) (1;2;1)
 - 4. Найти координаты вектора \vec{AB} , если \vec{A} (2; 4; –6) \vec{B} (2; –4; 8)
- a) (0; -4; 7) b) (2; -4; 2) c) (0; 4; -7)
 - 5. Найти длину вектора \vec{a} (-1; 2; -2)
- - 6. Найти длину вектора \vec{AB} , если \vec{A} (5; 3; 1) \vec{B} (4; 5; -1)
- a) 3 b) 2
 - 7. Условие коллинеарности векторов $\vec{a}(x_1; y_1; z_1)_{\mathsf{H}} \vec{b}(x_2; y_2; z_2)_{\mathsf{И}}$ имеет вил:

$$a) \ x_1x_2 + y_1y_2 + z_1z_2 = 0 \ b) \ x_1x_2 = y_1y_2 = z_1z_2$$
 $c) \frac{x_1}{x_2} = \frac{y_1}{y_2} = \frac{z_1}{z_2} = m$ 8. Укажите вектор, коллинеарный вектору $\vec{a}(2; -3; -1)$ $a) \ \vec{b} \ (6; -9; -3)$ $b) \ \vec{b} \ (8; 12; -4)$ $c) \ \vec{b} \ (-4; 6; -2)$

- - 9. Найти скалярное произведение векторов $\vec{a}(4; -3; 1)$ и $\vec{b}(5; -2; -3)$
- - 10. Найти координаты вектора $\vec{a} = -\vec{i} + 3\vec{j} + 5\vec{k}$
- a) (1; -3; -5) b) (-1; -3; 5) c) (-1; 3; 5)
 - 11. Условие перпендикулярности векторов $\vec{a}(x_1; y_1; z_1)_{\text{ и}} \quad \vec{b}(x_2; y_2; z_2)_{\text{ имеет вид:}}$

$$a) x_1 x_2 + y_1 y_2 + z_1 z_2 = 0 b) x_1 x_2 = y_1 y_2 = z_1 z_2 c) \frac{x_1}{x_2} = \frac{y_1}{y_2} = \frac{z_1}{z_2} = m$$

- 12. При каком значении m векторы \vec{a} (1; 3; -2) \vec{b} (-1; m; 4) векторы перпендикулярны?
- c) -3 a) 5 b) 3
- 13. Вершинами треугольника служат точки A (10; -2; 8), B (8; 0; 7) $_{\rm H}$ C (10; 2; 8) Найти длину стороны АВ.
- a) 4 b) 3 c) 1

14. Вершинами треугольника служат точки $A\left(10;-2;8\right)_{,}$ $B\left(8;0;7\right)_{,}$ $C\left(10;2;8\right)_{,}$ Найти длину стороны AC .

15. Найти координаты вектора
$$\vec{a} + \vec{b}$$
, если $\vec{a} = 3\vec{i} + 2\vec{j} - 5\vec{k}$ и $\vec{a} = -2\vec{i} + 3\vec{j} + 4\vec{k}$ а) (1; 5; -1) b) (5; -1; -9) c) (-1; 3; 5)

16. Найти координаты вектора
$$\vec{a}-\vec{b}$$
 , если $\vec{a}=3\vec{i}+2\vec{j}-5\vec{k}$ и $\vec{a}=-2\vec{i}+3\vec{j}+4\vec{k}$ $a)$ (1; 5; -1) b) (5; -1; -9) c) (-1; 3; 5)

17. Найти угол между векторами
$$\vec{a}(2; 2; -1)$$
 и $\vec{b}(-3; 6; 6)$

a)
$$45^{\circ} b$$
) $60^{\circ} c$) 90°

$$A(3;5;6)$$
 и $B(5;-1;0)$. Найти координаты середины отрезка $A(3;5;6)$ и $B(5;-1;0)$. Найти координаты середины отрезка $A(3;5;6)$ и $B(5;-1;0)$.

Тема 3.1. Пределы и непрерывность

Устный опрос

- 1. Дайте определения предела функции в точке.
- 2. Сформулировать свойства пределов
- 3. Какие типы неопределенностей вам известны?

4. Как избавиться о неопределенности
$$\frac{0}{0}$$

5. Чему равно значение предела функции при неопределенности
$$\begin{bmatrix} \frac{c}{0} \\ 0 \end{bmatrix}$$
?

- 6. Чему равно значение предела функции при неопределенности c?
- 7. Сформулируйте первый и второй замечательный пределы.
- 8. Чему равна неопределенность вида c^{∞} ?
- 9. Чему равна неопределенность вида $0 \cdot c$?

Практическая работа № 4 Вычисление пределов с помощью замечательных пределов. Раскрытие неопределенностей

Цель: Проверить знания и умения по вычислению пределов, сводящихся к замечательным.

Задания

Найти пределы.

k – порядковый номер в журнале

1).
$$\lim_{x\to 0} \frac{\sin 3x}{(k+2)x}$$
, 2) $\lim_{x\to 0} \frac{k x^2}{\sin^2 5x}$, 3) $\lim_{x\to 0} \frac{tg(kx+3x)x^2}{5x}$,

4)
$$\lim_{x \to \infty} \left(1 + \frac{k}{x} \right)^x, 5) \lim_{x \to 0} \frac{\sin kx - \sin 5x}{kx}, \qquad 6) \lim_{x \to 0} \frac{\cos 2x - \cos kx}{x}$$

Задание 1.

7.1.
$$\lim_{x \to \infty} \left(\frac{x+4}{x+8}\right)^{-3x} \quad \text{Otbet: e}^{12} \qquad 7.2. \lim_{x \to \infty} \left(\frac{x}{x+1}\right)^{2x-3} \quad \text{Otbet: e}^{-12}$$
7.3.
$$\lim_{x \to \infty} \left(\frac{2x}{1+2x}\right)^{-4x} \quad \text{Otbet: e}^{2} \qquad 7.4. \lim_{x \to \infty} \left(\frac{x-1}{x}\right)^{-5x} \quad \text{Otbet: e}^{-12}$$
7.5.
$$\lim_{x \to \infty} \left(\frac{2x+5}{2x+1}\right)^{5x} \quad \text{Otbet: e}^{10} \qquad 7.6. \lim_{x \to \infty} \left(\frac{x+3}{x-1}\right)^{-5x} \quad \text{Otbet: e}^{-15}$$
7.7.
$$\lim_{x \to \infty} \left(\frac{x+2}{x+1}\right)^{1+2x} \quad \text{Otbet: e}^{2} \qquad 7.8. \lim_{x \to \infty} \left(\frac{x+3}{x-1}\right)^{-5x} \quad \text{Otbet: e}^{-15}$$
7.9.
$$\lim_{x \to \infty} \left(\frac{2x}{2x-3}\right)^{3x} \quad \text{Otbet: e}^{-9/2} \qquad 7.10. \lim_{x \to \infty} \left(\frac{x+3}{x-1}\right)^{-5x} \quad \text{Otbet: e}^{-14}$$
7.10.
$$\lim_{x \to \infty} \left(\frac{x-7}{x}\right)^{2x+1} \quad \text{Otbet: e}^{-15} \qquad 7.12. \lim_{x \to \infty} \left(\frac{2x+1}{2x-1}\right)^{-3x+1} \quad \text{Otbet: e}^{-14}$$
7.11.
$$\lim_{x \to \infty} \left(\frac{x-2}{x+1}\right)^{2x-3} \quad \text{Otbet: e}^{-15} \qquad 7.12. \lim_{x \to \infty} \left(\frac{2x+1}{2x-1}\right)^{-3x+1} \quad \text{Otbet: e}^{-14}$$
7.12.
$$\lim_{x \to \infty} \left(\frac{x+5}{x}\right)^{3x+4} \quad \text{Otbet: e}^{-15} \qquad 7.12. \lim_{x \to \infty} \left(\frac{x+5}{x}\right)^{3x+4} \quad \text{Otbet: e}^{-15}$$
7.13.
$$\lim_{x \to \infty} \left(\frac{x-7}{x+1}\right)^{4x-2} \quad \text{Otbet: e}^{-3} \qquad 7.20. \lim_{x \to \infty} \left(\frac{x+2}{x}\right)^{3-2x} \quad \text{Otbet: e}^{-15}$$
7.14.
$$\lim_{x \to \infty} \left(\frac{x+3}{x-1}\right)^{-3x+1} \quad \text{Otbet: e}^{-14} \qquad 7.12. \lim_{x \to \infty} \left(\frac{x+3}{x-1}\right)^{-3x+1} \quad \text{Otbet: e}^{-14} \qquad 7.12. \lim_{x \to \infty} \left(\frac{x+3}{x-1}\right)^{-3x+1} \quad \text{Otbet: e}^{-14} \qquad 7.12. \lim_{x \to \infty} \left(\frac{x+3}{x-1}\right)^{-3x+1} \quad \text{Otbet: e}^{-14} \qquad 7.12. \lim_{x \to \infty} \left(\frac{x+3}{x-1}\right)^{-3x+1} \quad \text{Otbet: e}^{-15} \qquad 7.12. \lim_{x \to \infty} \left(\frac{x+3}{x-1}\right)^{-3x+1} \quad \text{Otbet: e}^{-14} \qquad 7.12. \lim_{x \to \infty} \left(\frac{x+3}{x-1}\right)^{-3x+1} \quad \text{Otbet: e}^{-15} \qquad 7.12. \lim_{x \to \infty} \left(\frac{x+3}{x-1}\right)^{-3x+1} \quad \text{Otbet: e}^{-15} \qquad 7.12. \lim_{x \to \infty} \left(\frac{x+3}{x-1}\right)^{-3x+1} \quad \text{Otbet: e}^{-15} \qquad 7.12. \lim_{x \to \infty} \left(\frac{x+3}{x-1}\right)^{-3x+1} \quad \text{Otbet: e}^{-15} \qquad 7.12. \lim_{x \to \infty} \left(\frac{x+3}{x-1}\right)^{-3x+1} \quad \text{Otbet: e}^{-15} \qquad 7.12. \lim_{x \to \infty} \left(\frac{x+3}{x-1}\right)^{-3x+1} \quad \text{Otbet: e}^{-15} \qquad 7.12. \lim_{x \to \infty} \left(\frac{x+3}{x-1}\right)^{-3x+1} \quad \text{Otbet: e}^{-15} \qquad 7.12. \lim_{x \to \infty} \left(\frac{x+3}{x-1}\right)^{-3x+1} \quad \text{Otbet: e}^{-15} \qquad 7.12. \lim_{x \to \infty} \left(\frac{x+3}{x-1}\right)^{-3x+1} \quad \text{Otbet: e}^{-15} \qquad 7.12. \lim_{x \to \infty} \left(\frac{x+3}{x-1}\right)^{-3x+1} \quad \text{O$$

Задание 2.

8.1.
$$\lim_{x \to \infty} \left(\frac{2x+3}{5x+7} \right)^{x+1}$$
 Other: 0 8.2. $\lim_{x \to \infty} \left(\frac{2x+1}{x-1} \right)^{x}$ Other: ∞ 8.3. $\lim_{x \to \infty} \left(\frac{x+1}{2x-1} \right)^{3x}$ Other: 0 8.4. $\lim_{x \to \infty} \left(\frac{2x-1}{4x+1} \right)^{3x-1}$ Other: 0

8.5.
$$\lim_{x \to \infty} \left(\frac{5x + 8}{x - 2} \right)^{x+4}$$
 Other: ∞

8.6. $\lim_{x \to \infty} \left(\frac{x + 1}{3x - 1} \right)^{2x+1}$ Other: 0

8.7. $\lim_{x \to \infty} \left(\frac{2x + 1}{x - 1} \right)^{4x}$ Other: ∞

8.8. $\lim_{x \to \infty} \left(\frac{x + 1}{2x - 1} \right)^{5x}$ Other: 0

8.9. $\lim_{x \to \infty} \left(\frac{x + 3}{2x - 4} \right)^{x+2}$ Other: 0

8.10. $\lim_{x \to \infty} \left(\frac{2x + 1}{3x - 1} \right)^{x-1}$ Other: 0

8.11. $\lim_{x \to \infty} \left(\frac{5x - 3}{x + 4} \right)^{x+3}$ Other: 0

8.12. $\lim_{x \to \infty} \left(\frac{2x - 3}{7x + 4} \right)^{x}$ Other: 0

8.13. $\lim_{x \to \infty} \left(\frac{x - 2}{3x + 1} \right)^{5x}$ Other: 0

8.14. $\lim_{x \to \infty} \left(\frac{x + 3}{4x - 5} \right)^{2x}$ Other: 0

8.15. $\lim_{x \to \infty} \left(\frac{x - 2}{3x + 10} \right)^{5x}$ Other: 0

8.16. $\lim_{x \to \infty} \left(\frac{2x + 1}{3x - 1} \right)^{x-1}$ Other: 0

8.17. $\lim_{x \to \infty} \left(\frac{x - 2}{3x + 10} \right)^{5x}$ Other: 0

8.18. $\lim_{x \to \infty} \left(\frac{3x - 4}{x + 6} \right)^{x-1}$ Other: ∞

8.19. $\lim_{x \to \infty} \left(\frac{x + 3}{3x - 1} \right)^{2x}$ Other: ∞

8.20. $\lim_{x \to \infty} \left(\frac{6x + 5}{x - 10} \right)^{5x}$ Other: ∞

8.21. $\lim_{x \to \infty} \left(\frac{5x - 7}{x + 4} \right)^{x-1}$ Other: ∞

8.22. $\lim_{x \to \infty} \left(\frac{3 - 4x}{2 - x} \right)^{x-1}$ Other: ∞

8.23. $\lim_{x \to \infty} \left(\frac{3 - 4x}{3 - x} \right)^{x-1}$ Other: ∞

8.24. $\lim_{x \to \infty} \left(\frac{3 - 4x}{5 + x} \right)^{x-1}$ Other: ∞

8.25. $\lim_{x \to \infty} \left(\frac{3x - 1}{2x + 5} \right)^{3x}$ Other: ∞

8.26. $\lim_{x \to \infty} \left(\frac{x + 1}{3x - 1} \right)^{5x}$ Other: ∞

8.27. $\lim_{x \to \infty} \left(\frac{3x - 1}{2x + 5} \right)^{3x}$ Other: ∞

8.28. $\lim_{x \to \infty} \left(\frac{x + 1}{3x - 1} \right)^{5x}$ Other: ∞

8.29. $\lim_{x \to \infty} \left(\frac{3x - 1}{2x - 5} \right)^{3x}$ Other: ∞

8.20. $\lim_{x \to \infty} \left(\frac{3 - 4x}{4x + 5} \right)^{3x}$ Other: ∞

8.21. $\lim_{x \to \infty} \left(\frac{3 - 4x}{4x + 5} \right)^{5x}$ Other: ∞

8.22. $\lim_{x \to \infty} \left(\frac{3 - 4x}{5 + x} \right)^{3x}$ Other: ∞

8.23. $\lim_{x \to \infty} \left(\frac{3 - 4x}{3 - x} \right)^{3x}$ Other: ∞

8.24. $\lim_{x \to \infty} \left(\frac{3 - 4x}{5 + x} \right)^{3x}$ Other: ∞

8.25. $\lim_{x \to \infty} \left(\frac{3x - 1}{3x + 5} \right)^{3x}$ Other: ∞

8.26. $\lim_{x \to \infty} \left(\frac{3x - 1}{3x + 5} \right)^{3x}$ Other: ∞

8.27. $\lim_{x \to \infty} \left(\frac{3x - 1}{3x + 5} \right)^{3x}$ Other: ∞

8.28. $\lim_{x \to \infty} \left(\frac{3x - 1}{3x + 5} \right)^{3x}$ Other: ∞

8.29. $\lim_{x \to \infty} \left(\frac{3x - 1}{3x + 5} \right)^{3x}$ Other

Контрольные вопросы

- 1.Сформулируйте первый и второй замечательный пределы.
- 2. Чему равна неопределенность вида c° ?
- 3. Чему равна неопределенность вида $0 \cdot c$?

Практическая работа № 5 Исследование функций и построение графиков

Цель: Проверить навыки и умения учащихся по вычислению пределов, раскрытию неопределенностей, классификации точек разрыва.

Задания

1.Доказать, что функции f(x) и $\varphi(x)$ при х> 0 являются бесконечно малыми одного порядка малости.

$$1.1. f(x) = tg2x, \ \varphi(x) = arcSinx$$

1.2.
$$f(x) = 1 - Cosx$$
, $\varphi(x) = 3x^2$

$$f(x) = arctg^2 3x, \ \varphi(x) = 4x^2$$

$$f(x) = \sin 3x - \sin x, \ \varphi(x) = 5x$$

$$f(x) = \cos 3x - \cos x$$
, $\varphi(x) = 7x^2$

$$f(x) = x^2 - \cos 2x, \ \varphi(x) = 6x^2$$

$$f(x) = \sqrt{1+x} - 1$$
, $\varphi(x) = 2x$

1.8
$$f(x) = \sin x + \sin 5x$$
, $\varphi(x) = 2x$

1.9.
$$f(x) = \frac{3x}{1-x}$$
, $\varphi(x) = \frac{x}{4+x}$

1.10.
$$f(x) = \frac{3x^2}{2+x}$$
, $\varphi(x) = 7x^2$

1.11.
$$f(x) = 2x^3$$
, $\varphi(x) = \frac{5x^3}{4-x}$

1.12.
$$f(x) = \frac{x^2}{5+x}$$
, $\varphi(x) = \frac{4x^2}{x-1}$

$$1.13. f(x) = \sin 8x, \ \varphi(x) = \arcsin 5x$$

$$f(x) = \sin 3x + \sin x, \ \varphi(x) = 10x$$

1.15.
$$f(x) = \cos 7x - \cos x$$
, $\varphi(x) = 2x^2$

1.16.
$$f(x) = 1 - \cos x$$
, $\varphi(x) = 8x^2$

1.17.
$$f(x) = 3\sin^2 4x$$
, $\varphi(x) = x^2 - x^4$

1.18.
$$f(x) = tg(x^2 + 2x)$$
, $\varphi(x) = x^2 + 2x$

1.19.
$$f(x) = \arcsin(x^2 - x), \ \varphi(x) = x^3 - x$$

1.20.
$$f(x) = Sin7x + Sinx$$
, $\varphi(x) = 4x$

1.21.
$$f(x) = \sqrt{4+x}$$
, $\varphi(x) = 3x$

$$f(x) = \sin(x^2 - 2x), \ \varphi(x) = x^4 - 8x$$

1.23.
$$f(x) = \frac{2x}{3-x}, \ \varphi(x) = 2x - x^2$$

1.24.
$$f(x) = \frac{x^2}{7+x}$$
, $\varphi(x) = 3x^3 - x^2$

1.25.
$$f(x) = \sin(x^2 + 5x)$$
, $\varphi(x) = x^3 - 25x$

1.26.
$$f(x) = Cosx - Cos^3 x$$
, $\varphi(x) = 6x^2$

1.27.
$$f(x) = arcSin2x$$
, $\varphi(x) = 8x$

1.28.
$$f(x) = 1 - Cos4x$$
, $\varphi(x) = x \cdot Sin2x$

1.29.
$$f(x) = \sqrt{9-x}$$
, $\varphi(x) = 2x$
1.30. $f(x) = Cos3x - Cos5x$, $\varphi(x) = x^2$

2.

Найти пределы, используя эквивалентные бесконечно малые функции.

3. Исследовать данные функции на непрерывность и построить их графики.

$$f(x) = \begin{cases} x+4, x < -1, \\ x^2 + 2, -1 \le x \le 1, \\ 2x, x \ge 1. \end{cases}$$
3.1.
$$f(x) = \begin{cases} x+2, x \le -1 \\ x^{2+1}, -1 < x \le 1 \\ -x+3, x > 1 \end{cases}$$
3.3.
$$f(x) = \begin{cases} -2(x+1), x \le -1 \\ (x+1)^3, -1 < x < 0 \\ x, x \ge 0 \end{cases}$$
3.5.
$$f(x) = \begin{cases} x^2 + 1, x \le 1 \\ 2x, 1 < x \le 3 \\ x+2, x > 3 \end{cases}$$
3.7.
$$f(x) = \begin{cases} x^2 + 1, x \le 1 \\ 2x, 1 < x \le 2 \\ x-2, x > 2 \end{cases}$$
3.9.
$$f(x) = \begin{cases} \sin x, x < 0 \\ x, 0 \le x \le 2 \\ 0, 0 < x \le 2 \end{cases}$$
3.11.
$$f(x) = \begin{cases} x - 1, x \le 0 \\ x^2, 0 < x < 2 \\ 2x, x \ge 2 \end{cases}$$
3.15.
$$f(x) = \begin{cases} -x, x < 0 \\ x^2 + 1, 0 \le x < 2 \\ x + 1, x \ge 2 \end{cases}$$
3.17.
$$f(x) = \begin{cases} x - 1, x < 0 \\ x^2 + 1, 0 \le x < 2 \\ x + 1, x \ge 2 \end{cases}$$
3.17.
$$f(x) = \begin{cases} 1, x \le 0 \\ 2, 0 < x < 2 \end{cases}$$
3.17.

$$f(x) = \begin{cases} -x, x < 0 \\ x^2 + 1, 0 \le x < 2 \\ x + 1, x \ge 2 \end{cases}$$
3.15.

$$f(x) = \begin{cases} x - 1, x < 0 \\ \sin x, 0 \le x < \pi \\ 3, x \ge \pi \end{cases}$$

$$f(x) = \begin{cases} \sin x, 0 \le x < \pi \\ 3, x \ge \pi \end{cases}$$
3.17.
$$f(x) = \begin{cases} 1, x \le 0 \\ 2, 0 < x \le 2 \\ x + 3, x > 2 \end{cases}$$
3.19.
$$f(x) = \begin{cases} 3x + 4, x \le -1 \\ x^2 - 2, -1 < x < 2 \\ x, x \ge 2 \end{cases}$$
3.21.

$$f(x) = \begin{cases} 3x + 4, x \le -1 \\ x^2 - 2, -1 < x < 2 \\ x, x \ge 2 \end{cases}$$

$$f(x) = \begin{cases} x+1, x \le 0 \\ (x+1)^2, 0 \le x \le 2 \\ -x+4, x > 2 \end{cases}$$

$$f(x) = \begin{cases} -x, x \le 0 \\ -(x-1)^2, 0 < x < 2 \\ x - 3, x \ge 2 \end{cases}$$

$$f(x) = \begin{cases} -x, x \le 0 \\ x^2, 0 < x \le 2 \\ x+1, x > 2 \end{cases}$$
.6.

$$f(x) = \begin{cases} x - 3, x < 0 \\ x + 1, 0 \le x \le 4 \\ 3 + x, x > 4 \end{cases}$$

$$f(x) = \begin{cases} 2x^3, x \le 0 \\ x, 0 < x \le 1 \\ 2 + x, x > 1 \end{cases}$$

$$f(x) = \begin{cases} x+1, x \le 0 \\ (x+1)^2, 0 \le x \le 2 \\ -x+4, x > 2 \end{cases}$$

$$3.2.$$

$$f(x) = \begin{cases} -x, x \le 0 \\ -(x-1)^2, 0 < x < 2 \end{cases}$$

$$3.4.$$

$$f(x) = \begin{cases} -x, x \le 0 \\ x^2, 0 < x \le 2 \end{cases}$$

$$3.6.$$

$$f(x) = \begin{cases} x-3, x < 0 \\ x+1, x > 2 \end{cases}$$

$$3.8.$$

$$f(x) = \begin{cases} x-3, x < 0 \\ x+1, 0 \le x \le 4 \end{cases}$$

$$3.8.$$

$$f(x) = \begin{cases} 2x^3, x \le 0 \\ x, 0 < x \le 1 \\ 2+x, x > 1 \end{cases}$$

$$f(x) = \begin{cases} 0, \frac{\pi}{2} < x < \pi \\ 2, x \ge \pi \end{cases}$$

$$3.12.$$

$$f(x) = \begin{cases} x+1, x < 0 \\ x^2-1, 0 \le x < 1 \\ -x, x \ge 1 \end{cases}$$

$$3.14.$$

$$f(x) = \begin{cases} x+3, x \le 0 \\ 1, 0 < x \le 2 \\ x^2-2, x > 2 \end{cases}$$

$$3.16.$$

$$f(x) = \begin{cases} -x+1, x < -1 \\ x^2+1, -1 \le x \le 2 \\ 2x, x > 2 \end{cases}$$

$$3.18.$$

$$f(x) = \begin{cases} -x+2, x \le -2 \\ x^3, -2 < x \le 1 \\ 2, x > 1 \end{cases}$$

$$3.20.$$

$$f(x) = \begin{cases} x, x \le 1 \\ (x-2)^2, 1 < x < 3 \\ -x+6, x \ge 3 \end{cases}$$

$$f(x) = \begin{cases} x+1, x < 0 \\ x^2 - 1, 0 \le x < 1 \\ -x, x \ge 1 \end{cases}$$

$$f(x) = \begin{cases} x+3, x \le 0 \\ 1, 0 < x \le 2 \\ x^2 - 2, x > 2 \end{cases}$$

$$f(x) = \begin{cases} -x+1, x < -1\\ x^2+1, -1 \le x \le 2\\ 2x, x > 2 \end{cases}$$

$$f(x) = \begin{cases} -x+2, x \le -2 \\ x^3, -2 < x \le 1 \\ 2, x > 1 \end{cases}$$
3.20.

$$f(x) = \begin{cases} x, x \le 1 \\ (x-2)^2, 1 < x < 3 \\ -x+6, x \ge 3 \end{cases}$$

$$f(x) = \begin{cases} x - 1, x < 1 \\ x^2 + 2, 1 \le x \le 2 \\ -2x, x > 2 \end{cases}$$
3.23.
$$f(x) = \begin{cases} x, x < -2 \\ -x + 1, -2 \le x \le 1 \\ x^2 - 1, x > 1 \end{cases}$$
3.24.
$$f(x) = \begin{cases} x, x < -2 \\ -x + 3, x \le 0 \\ -x^2 + 4, 0 < x < 2 \\ x - 2, x \ge 2 \end{cases}$$
3.25.
$$f(x) = \begin{cases} 0, x \le -1 \\ x^2 - 1, -1 < x \le 2 \\ 2x, x > 2 \end{cases}$$
3.26.
$$f(x) = \begin{cases} -1, x < 0 \\ \cos x, 0 \le x \le \pi \\ 1 - x, x > \pi \end{cases}$$
3.27.
$$f(x) = \begin{cases} 2, x < -1 \\ 1 - x, -1 \le x \le 1 \\ \ln x, x > 1 \end{cases}$$
3.28.
$$f(x) = \begin{cases} -x, x \le 0 \\ x^3, 0 < x \le 2 \\ x + 4, x > 2 \end{cases}$$
3.29.

Исследовать данные функции на непрерывность в указанных точках

4.1.
$$f(x) = 2^{\frac{1}{x-3}} + 1$$
, $x_1 = 3$, $x_2 = 4$

4.2.
$$f(x) = 5^{\frac{1}{x-3}} - 1$$
, $x_1 = 3$, $x_2 = 4$

$$f(x) = \frac{x+7}{x-2}$$
, $x_1 = 2$, $x_2 = 3$

4.4. f(
$$f(x) = \frac{x-5}{x+3}$$
, $x_1 = -2$, $x_2 = -3$

4.5.
$$f(x) = 4^{\frac{1}{3-x}} + 2$$
, $x_1 = 3$, $x_2 = 2$

4.6.
$$f(x) = 9^{\frac{1}{2-x}}, \quad x_1 = 0, \ x_2 = 2$$

4.7.
$$f(x) = 2^{\frac{1}{x-5}} + 1$$
, $x_1 = 5$, $x_2 = 4$

4.8.
$$f(x) = 5^{\frac{1}{x-4}} - 1$$
, $x_1 = 3$, $x_2 = 4$

4.9.
$$f(x) = 6^{\frac{1}{x-3}} + 3$$
, $x_1 = 3$, $x_2 = 4$

4.10.
$$f(x) = 7^{\frac{1}{5-x}} + 1$$
, $x_1 = 5$, $x_2 = 4$

$$f(x) = \frac{x-3}{x+4}, \quad x_1 = -5, \ x_2 = -4$$

$$f(x) = \frac{x+5}{x-2}$$
, $x_1 = 3$, $x_2 = 2$

4.13.
$$f(x) = 5^{\frac{2}{x-3}}, \quad x_1 = 3, \ x_2 = 4$$

$$4.14$$
, $f(x) = 4^{\frac{2}{x-1}} - 3$, $x_1 = 1$, $x_2 = 2$

4.15.
$$f(x) = 2^{\frac{5}{1-x}} - 1$$
, $x_1 = 0$, $x_2 = 1$

4.16.
$$f(x) = 8^{\frac{4}{x-2}} - 1$$
, $x_1 = 2$, $x_2 = 3$

4.17.
$$f(x) = 5^{\frac{4}{3-x}} + 1$$
, $x_1 = 2$, $x_2 = 3$

$$f(x) = \frac{3x}{x-4}$$
, $x_1 = 5$, $x_2 = 4$

4.19.
$$f(x) = \frac{2x}{x^2 - 1}$$
, $x_1 = 1$, $x_2 = 2$

4.20.
$$f(x) = 2^{\frac{3}{x+2}} + 1$$
, $x_1 = -2$, $x_2 = -1$

4.21.
$$f(x) = 4^{\frac{3}{x-2}} + 2$$
, $x_1 = 2$, $x_2 = 3$

4.22.
$$f(x) = 3^{\frac{2}{x+1}} - 2$$
, $x_1 = -1$, $x_2 = 0$

4.23.
$$f(x) = 5^{\frac{3}{x+4}} + 1$$
, $x_1 = -5$, $x_2 = -4$

$$f(x) = \frac{x-4}{x+2}$$
, $x_1 = -2$, $x_2 = -1$

$$f(x) = \frac{x-4}{x+3}$$
, $x_1 = -3$, $x_2 = -2$

4.26.
$$f(x) = \frac{x+5}{x-3}$$
, $x_1 = 3$, $x_2 = 4$

4.27.
$$f(x) = 3^{\frac{4}{1-x}} + 1$$
, $x_1 = 1$, $x_2 = 2$

$$f(x) = \frac{4x}{x+5}$$
, $x_1 = -5$, $x_2 = -4$

4.29.
$$f(x) = 6^{\frac{2}{4-x}}, \quad x_1 = 3, \ x_2 = 4$$

4.30.
$$f(x) = \frac{x+1}{x-2}$$
, $x_1 = 2$, $x_2 = 3$

Контрольные вопросы

- 1. Какие величины называют бесконечно малыми одного порядка малости?
- 2. Какие величины называют эквивалентными бесконечно малыми?
- 3. Какая функция называется непрерывной в точке?
- 4.Сколько известно вам точек разрыва функции, какие?

Самостоятельная работа № 1

Вариант 1

1. Вычислить предел функции:

$$\lim_{x \to 3} \frac{x^2 - 9}{x^2 - 8x + 15}$$

2. Вычислить предел функции:

$$\lim_{x \to 2} \frac{x+5}{3x-6}$$

3. Вычислить предел функции:

$$\lim_{x \to 0} \frac{\sin 17x}{\sin 12x}$$

4. Вычислить предел функции:

$$\lim_{x \to \infty} \left(1 + \frac{7}{x} \right)^{\frac{x}{3}}$$

Вариант 2

1. Вычислить предел функции:

$$\lim_{x \to 4} \frac{x^2 + x - 20}{x^2 - 16}$$

2. Вычислить предел функции:

$$\lim_{x\to 2}\frac{3x+6}{2x-4}.$$

3. Вычислить предел функции:

$$\lim_{x \to 0} \frac{\sin 7x}{\sin 13x}$$

4. Вычислить предел функции:

$$\lim_{x \to \infty} \left(1 + \frac{12}{x} \right)^{\frac{x}{4}}$$

Вариант 3

1. Вычислить предел функции:

$$\lim_{x \to 7} \frac{x^2 - 49}{x^2 - 5x - 14}.$$

2. Вычислить предел функции:

$$\lim_{x \to 3} \frac{x^2 + 4}{2x - 6}.$$

3. Вычислить предел функции:

$$\lim_{x \to 0} \frac{\sin 9x}{\sin 4x}$$

4. Вычислить предел функции:

$$\lim_{x\to\infty} \left(1 + \frac{15}{x}\right)^{\frac{x}{5}}$$

Вариант 4

1. Вычислить предел функции:

$$\lim_{x \to 5} \frac{x^2 - 12x + 35}{x^2 - 25}$$

2. Вычислить предел функции:

$$\lim_{x \to 5} \frac{x^2 - 1}{2x - 10}$$

Самостоятельная работа №2

Вариант 1

Исследовать функцию
$$f(x) = \frac{1}{x}$$
 на непрерывность в точке $x_0 = 0$.

Вариант 2

 $f(x) = \begin{cases} x^2 & npu & x \neq 0, \\ 1 & npu & x = 0 \end{cases}$ На непрерывность в точке $x_0 = 0$

Вариант 3

Исследовать функцию $f(x) = x^2$ на непрерывность в точке $x_0 = 0$.

3. Вычислить предел функции:

$$\lim_{x \to 0} \frac{\sin 8x}{\sin 19x}$$

4. Вычислить предел функции:

$$\lim_{x\to\infty} \left(1+\frac{4}{x}\right)^{2x}$$

Вариант 5

1. Вычислить предел функции:

$$\lim_{x \to 6} \frac{x^2 - 3x - 18}{x^2 - 36}.$$

2. Вычислить предел функции:

$$\lim_{x \to 4} \frac{2x - 3}{3x - 12} \, .$$

3. Вычислить предел функции:

$$\lim_{x\to 0} \frac{\sin 5x}{\sin 14x} \ .$$

4. Вычислить предел функции:

$$\lim_{x \to \infty} \left(1 + \frac{10}{x} \right)^{3x}$$

Вариант 6

1. Вычислить предел функции:

$$\lim_{x \to 9} \frac{x^2 - 81}{x^2 - 11x + 18}$$

2. Вычислить предел функции:

$$\lim_{x\to 6} \frac{3x-5}{2x-12}$$

3. Вычислить предел функции:

$$\lim_{x \to 0} \frac{\sin 19x}{\sin 3x}$$

4. Вычислить предел функции:

$$\lim_{x\to\infty} \left(1 + \frac{14}{x}\right)^{2x}$$

Тема. 3.2. Дифференциальное исчисление функций одной переменной

Устный опрос

Сформулировать правила дифференцирования и записать производные основных элементарных функций:

1°.
$$c' =$$

$$2^{\circ}$$
. $(x^{\alpha})' =$

B частности,
$$x' =$$

B частности,
$$x'$$

$$(x^2)'$$

$$(x^{2})' =$$

$$(x^{3})' =$$

$$(\sqrt{x})' =$$

$$\left(\frac{1}{x}\right)' =$$

$$8^{\circ}$$
. $(tgx)' =$

$$9^{\circ}$$
. $(ctgx)' =$

10°.
$$(\arcsin x)' =$$

11°.
$$(\arccos x)' =$$

12°.
$$(arctgx)' =$$

$$(arcctgx)' =$$

ПРАВИЛА ДИФФЕРЕНЦИРОВАНИЯ

$$14^{\circ}. \qquad (u+v)' =$$

3°.
$$(kx+b)' =$$
 15°. $(u-v)' =$ 4°. $(a^x)' =$ 16°. $(uv)' =$

$$(a^x)' = 16^\circ. \quad (uv)' =$$

$$(cu)' = 17^{\circ}$$
. $(cu)' = 17^{\circ}$.

В частности,
$$(e^x)' = 17^\circ$$
. $(cu)' = 18^\circ$. $(log_a x)' = 18^\circ$. $(log_a x)' = (log_a x)' =$

B частности,
$$\left(\frac{1}{v}\right) =$$

$$6^{\circ}$$
. $(\sin x)' =$ ПРОИЗВОДНАЯ СЛОЖНОЙ ФУНКЦИИ 7° . $(\cos x)' =$ 19° . $f(\varphi(x))' =$

Самостоятельная работа № 1

Вариант 1

- 1. Найти производную функции $y = \sin^6(4x^3 2)$
- 2. Найти производную третьего порядка функции $y = 3x^4 + \cos 5x$
- 3. Написать уравнение касательной к графику функции $f(x) = \frac{3}{x}$ в точке с абсциссой $x_0 = -1$, $x_0 = 1$
- 4. Материальная точка движется по закону $x(t) = -\frac{1}{3}t^3 + 2t^2 + 5t$ ускорение в момент времени t=5 с. (Перемещение измеряется в метрах.)

Вариант 2

- 1. Найти производную функции $y = \cos^4(6x^2 + 9)$
- 2. Найти производную третьего порядка функции $y = 2x^5 \sin 3x$
- 3. Написать уравнение касательной к графику функции $f(x) = 2x x^2$ в точке с абсциссой $x_0 = 0$, $x_0 = 2$.

4. Материальная точка движется по закону $x(t) = t^3 - 4t^2$. Найти скорость и ускорение в момент времени t=5 с. (Перемещение измеряется в метрах.)

Вариант 3

- 1. Найти производную функции $y = tg^5(3x^4 13)$.
- 2. Найти производную третьего порядка функции $y = 4x^3 e^{5x}$
- 3. Написать уравнение касательной к графику функции $f(x) = x^2 + 1$ в точке с абсциссой $x_0 = 0$, $x_0 = 1$.
- $x(t) = \frac{1}{4}t^4 + t^2$ 4. Материальная точка движется по закону . Найти скорость и ускорение в момент времени t=5 с. (Перемещение измеряется в метрах.)

Вариант 4

- 1. Найти производную функции $y = ctg^4(5x^3 + 6)$.
- 2. Найти производную третьего порядка функции $y = 5x^4 \cos 4x$.
- 3. Написать уравнение касательной к графику функции $f(x) = x^3 1$ в точке с абсциссой $x_0 = -1$, $x_0 = 2$.
- 4. Материальная точка движется по закону $x(t) = t^4 2t$. Найти скорость и ускорение в момент времени t=5 с. (Перемещение измеряется в метрах.)

Вариант 5

- 1. Найти производную функции $y = \arcsin^3 7x^2$.
- 2. Найти производную третьего порядка функции $y = 4x^4 + \sin 2x$.
- 3. Написать уравнение касательной к графику функции f(x) = tgx в точке с абсциссой $x_0 = \frac{\pi}{4}$, $x_0 = \frac{\pi}{3}$.
- 4. Материальная точка движется по закону $x(t) = 2t^3 8$. Найти скорость и ускорение в момент времени t=5 с. (Перемещение измеряется в метрах.)

Вариант 6

- 1. Найти производную функции $y = arctg^6 5x^4$
- 2. Найти производную третьего порядка функции $y = 6x^5 + e^{4x}$
- 3. Написать уравнение касательной к графику функции $f(x) = 1 + \cos x$ в точке с абсциссой $x_0 = 0$, $x_0 = \frac{\pi}{2}$.
- 4. Материальная точка движется по закону $x(t) = t^4 + 2t$. Найти скорость и ускорение в момент времени t=5 с. (Перемещение измеряется в метрах.)

43

Самостоятельная работа № 2

Исследовать функцию и построить ее график.

Вариант 1

$$f(x) = x^2 - 2x + 8$$

Вариант 2

$$f(x) = -\frac{2x^2}{3} + x + \frac{2}{3}$$

Вариант 3

$$f(x) = -x^2 + 5x + 4$$

Вариант 4

$$f(x) = \frac{x^2}{4} + \frac{x}{16} + \frac{1}{4}$$

Вариант 5

$$f(x) = -x^3 + 3x - 2$$

Вариант 6

$$f(x) = x^4 - 2x^2 - 3$$

Вариант 7

$$f(x) = x^3 + 3x + 2$$

Вариант 8

$$f(x) = 3x^2 - x^3$$

Практическая работа № 6

Дифференцирование суммы, произведения, частного двух функций. Дифференцирование сложной функции. Дифференцирование неявной функции. Дифференцирование функции, заданной параметрически. Логарифмическое дифференцирование

Цель: Проверить навыки и умения студентов по вычислению производных простейших функций.

Задания

1. Продифференцировать данные функции.

1.1.
$$y = 2x^{5} - \frac{4}{x^{3}} + \frac{1}{x} + 3\sqrt{x}$$
1.2.
$$y = \frac{3}{x} + 5\sqrt{x^{2}} - 4x^{3} + \frac{2}{x^{4}}$$
1.3.
$$y = 3x^{4} + 3\sqrt{x^{5}} - \frac{2}{x} - \frac{4}{x^{2}}$$
1.4.
$$y = 7\sqrt{x} - \frac{2}{x^{5}} - 3x^{2} + \frac{4}{x}$$
1.5.
$$y = 7x + \frac{5}{x^{2}} - 7\sqrt{x^{4}} + \frac{6}{x}$$
1.6.
$$y = 5x^{2} - \sqrt[3]{x^{4}} + \frac{4}{x^{3}} - \frac{5}{x}$$
1.7.
$$y = 3x^{2} - \frac{3}{x^{3}} - \sqrt{x^{3}} + \frac{10}{x^{5}}$$
1.8.
$$y = \sqrt[3]{x^{7}} + \frac{3}{x^{7}} - \sqrt{x^{4}} + \frac{4}{x^{5}} - \frac{5}{x^{7}}$$
1.9.
$$y = 2\sqrt{x^{3}} - \frac{7}{x} + 3x^{2} - \frac{2}{x^{5}}$$
1.10.
$$y = 4x^{6} + \frac{5}{x} - \sqrt[3]{x^{7}} - \frac{7}{x^{4}}$$
1.11.
$$y = 4x^{3} - \frac{3}{x} - \sqrt[5]{x^{2}} + \frac{6}{x^{2}}$$
1.12.
$$y = 4x^{3} - \frac{3}{x} - \sqrt[5]{x^{2}} + \frac{6}{x^{2}}$$

1.13.
$$y = 5x^{2} - \frac{8}{x^{2}} + 4\sqrt{x} + \frac{1}{x}$$

$$y = \frac{4}{x^{5}} - \frac{9}{x} + \sqrt[5]{x^{2}} - 7x^{3}$$
1.15.
$$y = 4x^{2} + \frac{4}{x} - \sqrt[3]{x^{7}} - 2x^{6}$$
1.17.
$$y = \sqrt{x^{5}} - \frac{3}{x} + \frac{4}{x^{3}} - 3x^{3}$$
1.19.
$$y = 3\sqrt{x} + \frac{4}{x^{5}} + \sqrt[3]{x^{2}} - \frac{7}{x}$$
1.21.
$$y = 7x^{2} + \frac{3}{x} - \sqrt[5]{x^{4}} + \frac{8}{x^{3}}$$
1.23.
$$y = x - \frac{5}{x^{4}} + \frac{1}{x} - \sqrt[5]{x^{4}}$$
1.25.
$$y = 4x^{3} + \frac{3}{x} - \sqrt[3]{x^{5}} - \frac{2}{x^{4}}$$
1.27.
$$y = \frac{7}{x} + \frac{4}{x^{3}} - \sqrt[5]{x^{3}} - 2x^{6}$$
1.29.

- 2. Найти производные функций.
- а порядковый номер в журнале

$$y = 2a \cdot x^5 - \frac{a}{x^2} e$$
) $y = \frac{ax^2 - 2a}{x^2 + 2a}$

6)
$$y = (a \cdot \sqrt{x} + 1) \cdot x^3$$
 $z) y = (ax^5 - 3) \cdot (x^4 + 2a)$

3. Решить уравнение y'(x) = 0, если:

$$y = \frac{x^2 - 3a}{x + 2a}$$

4. Решить неравенство:

$$y'(x) > 0$$
, если $y = ax^2 + 3a \cdot x - 5a$

Контрольные вопросы

- 2. Дайте определение производной функции.
- 3. Из каких операций складывается общее правило нахождения производной данной функции?

 $y = \frac{9}{x^3} + \sqrt[3]{x^4} - \frac{2}{x} + 5x^4$

 $1.16. \quad y = \frac{8}{x^3} + \frac{3}{x} - 4\sqrt{x^3} + 2x^7$

 $y = 10x^2 + 3\sqrt{x^5} - \frac{4}{x} - \frac{5}{x^4}$

1.20. $y = 9x^3 + \frac{5}{x} - \frac{7}{x^4} + \sqrt[3]{x^7}$

1.22. $y = \sqrt{x^3} + \frac{2}{x} - \frac{4}{x^5} - 5x^3$

1.24. $y = 8x^3 - \frac{4}{x} - \frac{7}{x^4} + \sqrt[7]{x^2}$

 $1.26. \quad y = \sqrt[4]{x^3} - \frac{5}{x} + \frac{4}{x^5} + 3x$

 $1.28. \quad y = 4x^5 - \frac{5}{x} - \sqrt{x^3} + \frac{2}{x^3}$

 $y = \frac{6}{x^4} - \frac{3}{x} + 3x^2 - \sqrt{x^7}$

- 4. Как вычислить частное значение производной?
- 5. Можно ли вычислить производную любой функции, пользуясь определением произволной?
- 6. Производная произведения и частного.

Нахождение производных сложных функций

Задания

Найти производные функции.

а – порядковый номер в журнале

1.
$$y = a x^{a} - \frac{a}{x^{a}} + \sqrt[a]{x^{a+6}} - ax + a$$

$$2. y = \sqrt[2a]{(ax^2 - 3ax + 5)^3} - \frac{a}{(x+a)^{a-4}}$$

$$3. y = tg^{a}(x+a) \cdot \arccos ax^{2}$$

$$4. y = \arcsin^a ax \cdot \log_a (x - a)$$

$$5. y = a^{-x^4} \cdot ctg \, ax^3$$

$$6. y = ctg^2 ax \cdot arctg \sqrt{x^a}$$

$$7. y = \frac{\sqrt{ax^2 - 3ax + 5a}}{e^{-x^6}}$$

$$8. y = \frac{\lg(ax^2 - 2ax + 3a)}{arcctg^2 ax}$$

Контрольные вопросы

- 1. Правила дифференцирования.
- 2. Производные элементарных функций.
- 3. Правило нахождения производной сложной функции.

Нахождение производных неявной функции, заданной параметрически.

Логарифмическое дифференцирование

Цель: Проверить навыки нахождения производной функций заданных неявно, дифференцирование функций заданных параметрически. Логарифмическое дифференцирование.

Задания

1. Продифференцировать функцию, заданную неявно

1.1.
$$y^2 + x^2 = \sin y$$

1.11.
$$\ln y - \frac{y}{x} = 7$$

1.21.
$$\sin y = xy^2 + 5$$

1.2.
$$y^2 - x = \cos y$$

1.12.
$$\sin y = 7x + 3y$$

1.22.
$$x^3 + y^3 = 5x$$

1.3.
$$y = x + arctgy$$

1.13.
$$tgy = 4y - 5x$$

1.23.
$$y^2 = \frac{(x-y)}{x+y}$$

1.4.
$$arctgy = 4x + 5y$$

$$1.14. \quad y = 7x - ctgy$$

1.24.
$$\sin^2(3x + y^2) = 5$$

$$1.5 \quad 3x + \sin y = 5y$$

1.15.
$$xy - 6 = \cos y$$

1.25.
$$ctg^2(x+y) = 5x$$

1.6.
$$yx = ctgy$$

1.16.
$$3y = 7 + xy^3$$

46

1.26.
$$\frac{e^3}{x} = xy + 1$$

1.7.
$$tgy = 3x + 5y$$

1.17.
$$y^2 = x + \ln \frac{y}{x}$$

1.27.
$$\frac{\cos y}{x} + x^2 + 1 = 0$$

1.8.
$$y = e^y + 4x$$

1.18.
$$x^2y^2 - y^3 = 4x - 5$$

$$1.28. \quad y \sin x = \cos(x - y)$$

1.9.
$$e^y = 4x - 7y$$

1.19.
$$x^2y^2 + x = 5y$$

1.29.
$$e^{xy} + \frac{y}{x} = \cos 3x$$

1.10.
$$4\sin^2(x+y) = x$$

1.20.
$$x^2v^2 + x^4 + v = 4$$

1.30.
$$\ln y = arctg \frac{x}{y}$$

2. Логарифмическое дифференцирование

$$2.1. \ v = 3^{x^2} - tg^4 2x$$

2.11.
$$y = (\ln(x+7))^{ctg \, 2x}$$

$$2.21. \ y = (arctg2x)^{\sin x}$$

2.2.
$$y = \lg^4(x^5 - \sin^5 2x)$$

2.12.
$$y = (\cos(3+x))^{\arcsin 3x}$$

2.22.
$$y = (ctg(7x+4))^{\sqrt{x+3}}$$

2.3.
$$y = (\sin 3x)^{\cos 5x}$$

2.13.
$$y = (\sin 4x)^{\frac{arctg \, 1}{x}}$$

2.23.
$$y = (tg3x^4)^{\sqrt{x+3}}$$

2.4.
$$v = (tg3x)^{x^4}$$

$$2.14. \ y = \left(ctg \, 2x^3\right)^{\sin\sqrt{x}}$$

2.23.
$$y = (tg3x^4)^{arccos 3x}$$

2.24. $y = (\sqrt{x+5})^{arccos 3x}$

$$2.5. e^{x^2y^2} - x^4 + y^4 = 5$$

$$2.15. \ y = \left(\sqrt{3x+2}\right)^{arcctg\ 2x}$$

2.25.
$$y = (tg7x^5)^{\sqrt{x+2}}$$

2.6.
$$y = (1 + x^4)^{tg7x}$$

$$2.16. \ y = (\arccos x)^{\sqrt{\cos x}}$$

2.26.
$$y = (\arccos(x+2))^{tg3x}$$

2.7.
$$y = (ctg5x)^{x^3-1}$$

2.17.
$$y = (\cos(2+x))^{\ln x}$$

2.27.
$$y = (arctg(x+7))^{\cos 2x}$$

$$2.8. \ 2^x + 2^y = 2^{x+y}$$

2.18.
$$v = (\cos 5x)^{arctg\sqrt{x}}$$

2.28.
$$y = (ctg(3x-2))^{\arcsin 3x}$$

$$2.9. \ y = (\sin 3x)^{\arccos x}$$

2.19.
$$y = (\ln(x+3))^{\sin\sqrt{x}}$$

2.29.
$$y = (\cos(2x-5))^{arctg \, 5x}$$

2.10.
$$y = (\arccos 5x)^{\ln x}$$

$$2.20. \ y = (\arcsin 5x)^{tg\sqrt{x}}$$

2.30.
$$y = (\lg(4x-3))^{\arccos 4x}$$

3. Дифференцирование функций, заданных параметрически

$$3.1. \begin{cases} x = (2t+3) \cdot \cos t \\ y = 3t^3 \end{cases}$$

3.11.
$$\begin{cases} x = e^t \cdot \cos t \\ y = e^t \cdot \sin t \end{cases}$$
3.12.
$$\begin{cases} x = t^4 \\ y = \ln t \end{cases}$$

3.21.
$$\begin{cases} x = \frac{\ln t}{t} \\ y = t^2 \cdot \ln t \end{cases}$$

3.2.
$$\begin{cases} x = 2\cos^2 t \\ y = 3\sin^2 t \end{cases}$$

$$3.12. \begin{cases} x = t^4 \\ y = \ln t \end{cases}$$

$$3.22. \begin{cases} x = \arccos t \\ y = \sqrt{1 - t^2} \end{cases}$$

$$3.3. \begin{cases} x = 6\cos^3 t \\ y = 2\sin^3 t \end{cases}$$

$$3.13. \begin{cases} x = 5\cos t \\ y = 4\sin t \end{cases}$$

3.23.
$$\begin{cases} x = \frac{1}{t+1} \\ y = \left(\frac{t}{t+1}\right)^2 \end{cases}$$

3.4.
$$\begin{cases} x = \frac{1}{t+2} \\ y = \left(\frac{t}{t+2}\right)^2 \end{cases}$$

$$3.14. \begin{cases} x = 5\cos^2 t \\ y = 3\sin^2 t \end{cases}$$

3.24.
$$\begin{cases} x = 5\sin^3 t \\ y = 3\cos^3 t \end{cases}$$

$$3.5. \begin{cases} x = e^{-2t} \\ y = e^{4t} \end{cases}$$

3.15.
$$\begin{cases} x = arctgt \\ y = \ln(1 + t^2) \end{cases}$$

3.25.
$$\begin{cases} x = \sqrt[3]{(t-1)^2} \\ y = \sqrt{t} - 1 \end{cases}$$

$$3.6. \begin{cases} x = \sqrt{t} \\ y = \sqrt[5]{t} \end{cases}$$

$$3.16. \begin{cases} x = \arcsin t \\ y = \sqrt{1 - t^2} \end{cases}$$

$$3.26. \begin{cases} x = e^{-3t} \\ y = e^{8t} \end{cases}$$

3.7.
$$\begin{cases} x = \frac{2t}{t^3 + 1} \\ y = \frac{t^2}{t^2 + 1} \end{cases}$$
3.18.
$$\begin{cases} x = 3(\sin t - t \cos t) \\ y = 3(\cos t + t \sin t) \end{cases}$$
3.27.
$$\begin{cases} x = \ln^2 t \\ y = t + \ln t \end{cases}$$
3.8.
$$\begin{cases} x = \sqrt{t^2 - 1} \\ y = \frac{t + 1}{\sqrt{t^2 - 1}} \end{cases}$$
3.17.
$$\begin{cases} x = 3(t - \sin t) \\ y = 3(1 - \cos t) \end{cases}$$
3.28.
$$\begin{cases} x = te^t \\ y = \frac{t}{e^t} \end{cases}$$
3.9.
$$\begin{cases} x = 4t + 2t^2 \\ y = 5t^3 - 3t^2 \end{cases}$$
3.19.
$$\begin{cases} x = \sin 2t \\ y = \cos^2 t \end{cases}$$
3.29.
$$\begin{cases} x = 6t^2 - 4 \\ y = 5t^5 \end{cases}$$
3.10.
$$\begin{cases} x = \frac{\ln t}{t} \\ y = t \cdot \ln t \end{cases}$$
3.20.
$$\begin{cases} x = e^{3t} \\ y = e^{-3t} \end{cases}$$
3.30.
$$\begin{cases} x = \arcsin t \\ y = \ln t \end{cases}$$

Контрольные вопросы

- 1. Какая функция называется, заданной неявно?
- 2. Алгоритм дифференцирования функции, заданной неявно.
- 3. Как находится производная функции заданной параметрически?
- 4. В чем смысл логарифмического дифференцирования?

Контрольная работа за 1 семестр Вариант 1

1. Решить систему уравнений (Ответ: (3,5; -1; -1,5))

$$\begin{cases} x + y + z = 1 \\ 2x + 3y - 2z = 7 \\ 3x + 2y + 5z = 0 \end{cases}$$

 $A = \begin{pmatrix} 2 & 1 & 3 \\ 3 & 1 & 2 \\ -1 & 2 & 3 \end{pmatrix} \quad B = \begin{pmatrix} 3 & 0 & 1 \\ -2 & 0 & 5 \\ 1 & 1 & 2 \end{pmatrix}$ 2. Найти определитель матрицы C = 2A - B, если

$$C = \begin{pmatrix} 1 & 2 & 5 \\ 8 & 2 & -1 \\ -5 & 3 & 4 \end{pmatrix}$$

Ответ:

3. Найти площадь треугольника с вершинами

$$A(-3; -2; -4)$$
, $B(-1; -4; -7)$, $C(1; -2; 2)$

a) $\lim_{x \to 0} \frac{x^3 - x^2 + 2x}{x^2 + x}$ 6) $\lim_{x \to \infty} \frac{7x^3 - 2x^2 + 4x}{2x^3 + 5}$ 4. Найти пределы: Ответ: a)2; б)

Вариант 2

1. Решить систему уравнений: (Ответ: (1; -1; 1))

$$\begin{cases} x + y - z = -1 \\ 3x - 2y + 4z = 9 \\ 2x + 3y + 2z = 1 \end{cases}$$

2. Найти определитель матрицы C=3A+2B, если $C=\begin{pmatrix}3&1&2\\-2&1&3\\0&1&1\end{pmatrix},\ B=\begin{pmatrix}-1&0&2\\3&5&0\\2&1&-3\end{pmatrix}$ $C=\begin{pmatrix}7&3&10\\0&13&9\\4&5&-3\end{pmatrix}$ твет:

$$C = \begin{pmatrix} 7 & 3 & 10 \\ 0 & 13 & 9 \\ 4 & 5 & -3 \end{pmatrix}$$

Найти площадь треугольника с вершинами A(1;2;0) , B(3;0;-3) , C(5;2;6) найти пределы: $a) \lim_{x\to 1} \frac{2x^2-x-1}{3x^2-x-2} \, \delta) \lim_{x\to \infty} \frac{5x^4+7x^2+6}{12x^4+5x^3}$

a)
$$\lim_{x\to 1} \frac{2x^2-x-1}{3x^2-x-2}$$
 δ) $\lim_{x\to \infty} \frac{5x^4+7x^2+6}{12x^4+5x^3}$

Найти пределы:

$$\frac{3}{5}$$
 $\frac{5}{12}$

Ответ:

Вариант 3

1. Решить систему уравнений: (Ответ: (-1; 1; 1))

$$\begin{cases} x - y + z = -1 \\ 2x + 3y + 4z = 5 \\ 3x - 2y - 2z = -7 \end{cases}$$

$$A = \begin{pmatrix} 1 & 3 & 4 \\ 2 & 1 & 6 \\ 0 & -1 & 2 \end{pmatrix}$$

$$\begin{cases} 3x - 2y - 2z = -7 \\ A = \begin{pmatrix} 1 & 3 & 4 \\ 2 & 1 & 6 \\ 0 & -1 & 2 \end{pmatrix} \end{cases}$$
 2.Найти $C = A^2 + 3A$, если
$$C = \begin{pmatrix} 10 & 11 & 42 \\ 10 & 4 & 44 \\ -2 & -6 & 4 \end{pmatrix}$$
 Ответ:

Найти площадь треугольника с вершинами A(1;-1;2) , B(5;-6;2) , C(1;3;-1) найти пределы: $a)\lim_{x\to -1}\frac{x^2-4x-5}{x^2-2x-3}$ $\delta)\lim_{x\to \infty}\frac{3x^2+10x+3}{2x^2+5x-3}$

$$\frac{3}{2}$$
 $\frac{3}{2}$

Ответ:

Вариант 4

1. Решить систему уравнений: (Ответ: (1; 1; 1))

$$\begin{cases} x - y - z = -1 \\ 4x + 5y - 3z = 6 \\ 2x + 3y - 2z = 3 \end{cases}$$

$$A = \begin{pmatrix} -4 & 1 & 2 \\ 1 & -1 & 5 \\ 3 & 0 & -2 \end{pmatrix}, B = \begin{pmatrix} 1 & 3 & 5 \\ 0 & 4 & -1 \\ -2 & 1 & 3 \end{pmatrix}$$
2. Найти $A^2 - 3B$, если
$$C = \begin{pmatrix} 20 & -14 & -22 \\ 10 & -10 & -10 \\ -12 & 0 & 1 \end{pmatrix}$$
Ответ:

$$C = \begin{pmatrix} 20 & -14 & -22 \\ 10 & -10 & -10 \\ -12 & 0 & 1 \end{pmatrix}$$

3. Найти площадь треугольника с вершинами
$$A(-1;2;3)$$
 , $B(2;1;4)$, $C(0;-3;4)$ 4. Найти пределы:
$$a) \lim_{x\to 1} \frac{2x^2-7x+4}{x^2-5x+6} \ \delta) \lim_{x\to \infty} \frac{x^3-3x^2+10}{7x^3+2x+1}$$

$$-\frac{1}{2} \qquad \frac{1}{7}$$

Ответ: а) ; б)

Вариант 5

1. Решить систему уравнений: (Ответ: (1;-1;-1))

$$\begin{cases}
-x + y + z = -3 \\
2x + 2y - 3z = 3 \\
3x + 4y + 5z = -6
\end{cases}$$

$$A = \begin{pmatrix} 2 & 3 & 1 \\ -4 & 0 & 5 \\ 3 & 1 & 2 \end{pmatrix} \qquad B = \begin{pmatrix} 3 & -1 & 2 \\ 2 & 5 & 1 \\ -2 & 3 & 0 \end{pmatrix}$$

2. Найти
$$C = A + AB$$
, если
$$C = \begin{pmatrix} 12 & 19 & 8 \\ -26 & 19 & -3 \\ 10 & 9 & 9 \end{pmatrix}$$
Ответ:

3. Найти площадь треугольника с вершинами A(7;3;4) , B(1;0;6) , C(4;5;-2) 4. Найти пределы: $a) \lim_{x\to 1} \frac{3x^2-11x +6}{2x^2-5x-3} \ \delta) \lim_{x\to \infty} \frac{8x^4+5x^2+6}{2x^5+x^3}$

$$\frac{1}{3}$$
 Other: a) ; 6) 0

Вариант 6

1. Решить систему уравнений: (Ответ: (-1; -1; 1))

$$\begin{cases}
-x - y + z = 3 \\
5x + 2y + 3z = -4 \\
3x + 4y - 2z = -9
\end{cases}$$

$$A = \begin{pmatrix} 4 & 3 & 1 \\ 1 & 3 & 2 \\ -2 & 4 & 0 \end{pmatrix}$$
2. Найти $C = A - A^2$, если

$$C = \begin{pmatrix} -13 & -22 & -9 \\ -2 & -17 & -5 \\ 2 & -2 & -6 \end{pmatrix}$$

3. Найти площадь треугольника с вершинами

$$A(1;-2;-3)$$
, $B(-1;-1;-2)$, $C(3;0;-2)$

4.Найти пределы:
$$a) \lim_{x\to 4} \frac{x^2-3x-4}{x^2-x-12}$$
 $box{ } 0) \lim_{x\to \infty} \frac{5+7x^2+6x}{12x^2+5x-3}$

$$\frac{5}{7}$$
 $\frac{7}{12}$

Ответ: а) ; б)

Практическое занятие № 7

Исследование функций на экстремум и выпуклость. Решение задач на наибольшие и наименьшие значения функции

Цель: Проверить навыки нахождения точек экстремума и алгоритм построения графиков функций.

Задания

1. Исследовать на экстремум следующие функции

$$a)y = \frac{x^4}{2} - 8x^2$$

$$a)y = x^3 - 6x^2 + 9$$

$$5)y = \frac{x^2 - 2x + 2}{x - 1}$$

$$1.16. \qquad b)y = \frac{-x^2 + 3x - 1}{x}$$

$$1.16. \qquad a)y = x^4 - 2x^2$$

$$1.17. \qquad b)y = \frac{x^2}{x - 2}$$

$$1.18. \qquad b)y = e^{-x^2}$$

$$1.18. \qquad b)y = 2x^3 - 3x^2 - 3$$

$$a)y = 2x^{3} - 3x^{2} - 36x + 40$$
1.4.
$$a)y = 2x^{3} - 3x^{2} - 36x + 40$$
1.19.
$$6)y = e^{x^{2}}$$

$$a)y = \frac{1}{4}x^4 - \frac{1}{24}x^6$$

$$(1.5.6) y = x \cdot \ln x$$

$$a)y = 6x^4 - 4x^6$$

$$1.6\ \delta$$
) $y = 5 - 4 \cdot \sqrt[3]{x^2}$

$$a)y = x^4 - 2x^2 + 2$$

$$1.7.6) y = \sqrt[3]{x^2 - 4x}$$

$$a) y = x^3 + 6x^2 + 9x$$

$$\int_{1.8.} 6y = \frac{2}{x^2 + 4}$$

$$a)y = x^3 + 3x^2 - 9x - 27$$

$$1.9.6$$
) $y = xe^{-x}$

$$a)y = -x^4 + 8x^2 - 16$$

$$6) y = x - \frac{1}{\sqrt{x}}$$

$$a) y = -x^3 + 4x^2 - 4x$$

$$(6) y = \frac{4}{x} - x$$

$$a)y = x^3 - 3x^2 + 4$$

$$6) y = 3x + \frac{1}{3x}$$

$$a)y = \frac{2}{3}x^3 - x^2 - 4x + 5$$

$$6) y = \frac{3}{x} - 1$$
1.13.

$$a)y = 2x^3 + 3x^2 - 2$$

$$\int_{1.14.} 6y = \frac{2}{x - 3}$$

$$a)v = x^4 - 8x^2 + 3$$

$$1.15. \ \delta)y = x - \sin 2x$$

$$a)y = 2(x+2)(x-1)^2$$

$$1.20. \ \delta)y = xe^x$$

$$a)y = -x^3 + 3x + 2$$

$$\int y = \frac{2}{x^2 - 4}$$

$$a) y = x^3 - 4x^2 + 4x$$

1.22.
$$\delta$$
) $y = xe^{-3x}$

$$a)y = x^2(x-3)+1$$

1.23.
$$\delta$$
) $y = (x-1)e^{3x}$

$$a)y = x^3 + 6x^2 + 9x$$

$$\int_{1.24.} \delta(y) = \frac{(x-2)(8-x)}{x^2}$$

a)
$$v = 2x^3 - 3x^2 - 4$$

$$\int \int y = \frac{x^2}{x^2 + 3}$$

a)y =
$$\frac{1}{2}(x-2)^2(2x+3)$$

$$6) y = 5 + \frac{1}{x}$$

$$a)y = \frac{1}{5}x^5 - 1\frac{1}{3}x^3$$

$$6) y = \frac{2x}{x^2 + 1}$$

$$a)y = 0.25x^4 - 2x^2 + 1.75$$

1.28.
$$\delta$$
) $y = \cos 3x - 3x$

a)
$$y = x^2(x^2 - 2) + 3$$

$$1.29.6$$
) $y = -\sqrt{x-3}$

$$a) y = 1 + 3x - x^3$$

$$\int_{1.30.} \vec{o}(y) = \frac{1}{x+2}$$

- 2. Исследовать на экстремум и построить график функции
- $2.1. \ y = x^3 3x^2 + 2$
- $2.2 y = 2x^3 + x^2 8x 7$
- $2.3. y = -x^4 + 5x^2 4$

 $2.16. \ y = x^3 + x^2 - x - 1$

$$2.17. \quad y = \frac{1}{3}x^3 + x^2 - 3x + \frac{5}{3}$$

$$2.18. \ y = 2x^4 - 9x^2 + 7$$

$$2.4. y = x^{3}(2-x)$$

$$2.5. y = -9x + x^{3}$$

$$2.6. y = \frac{1}{4}x^{4} - \frac{2}{3}x^{3} - \frac{3}{2}x^{2} + 2$$

$$2.7. y = 4x^{4} - 2x^{2} + 3$$

$$2.8. y = x^{4} - 4x^{3} - 8x^{2} + 1$$

$$2.9. y = x^{3} - 4x^{2}$$

$$2.10. y = 3x^{4} - 4x^{3}$$

$$2.11. y = \frac{1}{3}x^{3} + 3x^{2}$$

$$2.11. y = \frac{1}{4}x^{4} + x^{2}$$

$$2.11. y = \frac{1}{4}x^{4} - 3x^{2} + 2$$

Контрольные вопросы

- 1. Признаки возрастания и убывания функции.
- 2. Алгоритм исследования функции на промежутки монотонности.
- 3. Определения точек максимума и минимума функции.
- 4. Необходимое и достаточное условие существования экстремума.
- 5. Алгоритм исследования функции на экстремум.
- 6. Наибольшее и наименьшее значение функции, алгоритм нахождения.

Нахождение точек перегиба, интервалов выпуклости и вогнутости

Цель: проверить умения и знания по нахождению интервалов выпуклости и вогнутости, точек перегиба.

Задания

1. Найти интервалы выпуклости и вогнутости, точки перегиба кривых

1.1.
$$y = x^4 - \frac{3}{2}x^2 - 4x$$

1.2. $y = \frac{1}{3}x^3 - x$
1.3. $y = x^3 - 6x^2 + 9x - 3$
1.4. $y = 2x^3 - 3x^2 - 4x + 9$
1.5. $y = -x^3 + 6x^2 - 15x + 10$
1.16 $y = -\frac{1}{4}x^4 + \frac{5}{3}x^3 + 4x^2$
1.17. $y = 3x^2 - x^3$
1.18. $y = \frac{5}{12}x^4 + \frac{2}{3}x^3 - \frac{9}{2}x^2$
1.19. $y = \frac{1}{3}x^3 + 2x^2$

$$1.6 \ y = x^4 - 12x^3 + 48x^2 - 50$$

$$1.7. y = x + 36x^2 - 2x^3 - x^4$$

$$y = \frac{1}{12}x^4 + \frac{1}{2}x^2$$

$$1.9. y = 12x^4 - 12x^2$$

$$1.10. \quad y = 3x^5 - 5x^2 + 1$$

1.11.
$$y = x^3 - 4x^2 - 2x + 1$$

1.12.
$$y = x^4 - 4x^3 + 8x - 2$$

1.13.
$$y = x^3 - 5x^2 + 3x - 1$$

1.14.
$$y = x^3 - 12x^2 + 3x$$

1.15.
$$y = \frac{1}{12}x^4 + \frac{1}{6}x^3 - x^2$$

$$1.21. \ y = x^3 + 3x^2 - 5x - 6$$

$$1.22 \quad y = x^4 - 12x^3 + 54x^2 - 50$$

$$y = \frac{1}{6}x^4 - x^2$$
.23.

$$y = \frac{1}{3}x^3 + 2x^2 - \frac{1}{3}$$

$$y = \frac{2}{3}x^3 + 4x^2 - 10$$

$$y = \frac{1}{3}x^3 - 2x^2$$

$$y = \frac{1}{3}x^3 + x^2 + \frac{1}{3}$$

$$y = x^3 + 3x^2 + 24x - 8$$

1.29.
$$y = x^3 - 9x^2 - 24x + 12$$

$$y = \frac{1}{3}x^3 - x^2 + 6$$

2. Исследовать на экстремум и точки перегиба кривую и построить схематический график функции

$$y = 6 + \frac{1}{3}x^3 - x^2$$

$$y = \frac{1}{6}x^3 - x^2 + \frac{1}{12}x^4$$

2.3.
$$y = 12 - 24x + x^3 - 9x^2$$

2.4.
$$y = 3x - 12x^2 + x^3$$

$$2.5. \ y = 24x - 8 + 3x^2 + x^3$$

$$2.6. \ y = 3x + x^3 - 5x^2 - 1$$

$$2.7. \quad y = x^2 + \frac{1}{3}x^3 + \frac{1}{3}$$

2.8.
$$y = 8x - 2 + x^4 - 4x^3$$

$$2.9. \quad y = -2x^2 + \frac{1}{3}x^3$$

$$2.10. \ \ y = 1 + x^3 - 4x^2 - 2x$$

$$y = 4x^2 - 10 + \frac{2}{3}x^3$$

2.12.
$$y = 1 + 3x^5 - 5x^2$$

$$2.13. \quad y = 2x^2 - \frac{1}{3} + \frac{1}{3}x^3$$

$$y = 54x^2 - 50 + 5x^4 - 12x^3$$

$$2.17. \ y = x - 2x^3 - x^4 + 36x^2$$

$$2.18. \ y = 3x^2 - 5x - 6 + x^3$$

$$2.19. \ y = 48x^2 - 50 + x^4 - 12x^3$$

$$y = 2x^2 + \frac{1}{3}x^3$$

2.20.

$$2.21. \ y = 6x^2 - x^3 - 15x + 10$$

$$2.22. \quad y = \frac{1}{3}x^3 - x$$

$$2.23. \ \ y = 9 + 2x^3 - 3x^2 - 4x$$

$$2.24. y = \frac{2}{3}x^3 - \frac{9}{2}x^2 + \frac{5}{12}x^4$$

$$2.25. \ y = 9x - 3 + x^3 - 6x^2$$

$$2.26$$
, $y = 9x - 3 + x^3 - 6x^2$

$$2.27. \ y = -x^3 + 3x^2$$

$$2.28. \quad y = -x + \frac{1}{3}x^3$$

2.14.
$$y = 12x^4 - 12x^2$$

 $y = \frac{1}{6}x^4 - x^2$
2.29. $y = x^4 - 4x - \frac{3}{2}x^2$
 $y = \frac{5}{3}x^3 + 4x^2 - \frac{1}{4}x^4$

3. Найти интервалы выпуклости и точки перегиба кривой

$$3.1 \ y = \frac{5x^4 + 3}{x}$$

$$3.16 \ y = \frac{x^2 - x - 1}{x^2 - 2x}$$

$$3.2 \ y = \frac{4 - 2x}{1 - x^2}$$

$$3.17 \ y = (x - 1)e^{3x + 1}$$

$$3.18 \ y = \frac{x^2 - 3x + 2}{x + 1}$$

$$3.19 \ y = \frac{x^5}{x^4 - 1}$$

$$3.19 \ y = \frac{x^5}{x^4 - 1}$$

$$3.20 \ y = \frac{2x - 1}{(x - 1)^2}$$

$$3.21 \ y = \frac{x^2 + 6}{x^2 + 1}$$

$$3.22 \ y = x \ln x$$

$$3.8 \ y = \frac{x^2 + 1}{x^2}$$

$$3.23 \ y = x + \frac{\ln x}{x}$$

$$3.9 \ y = \frac{4x - x^2 - 4}{x}$$

$$3.10 \ y = x/(9 - x)$$

$$3.11 \ y = \frac{x^2}{4x^2 - 1}$$

$$3.12 \ y = -\ln \frac{1 + x}{1 - x}$$

$$3.24 \ y = x - \ln(1 + x^2)$$

$$3.25 \ y = x^2 - 2 \ln x$$

$$3.26 \ y = (x^3 + 4)/x^2$$

$$3.27 \ y = \ln(x^2 + 1)$$

$$3.28 \ y = \frac{(x - 2)^2}{x + 1}$$

$$3.29 \ y = \frac{\ln x}{\sqrt{x}}$$

$$3.20 \ y = \frac{\ln x}{x^2 + 1}$$

$$3.21 \ y = -\ln \frac{1 + x}{1 - x}$$

$$3.22 \ y = \ln x$$

$$3.23 \ y = x + \frac{\ln x}{x}$$

$$3.24 \ y = x - \ln(1 + x^2)$$

$$3.25 \ y = x^2 - 2 \ln x$$

$$3.26 \ y = (x^3 + 4)/x^2$$

$$3.27 \ y = \ln(x^2 + 1)$$

$$3.28 \ y = \frac{(x - 2)^2}{x + 1}$$

$$3.29 \ y = \frac{\ln x}{\sqrt{x}}$$

$$3.29 \ y = \frac{\ln x}{(x - 1)^2}$$

Контрольные вопросы

- 1. Что такое точка перегиба?
- 2. Сформулируйте правило нахождения точки перегиба.
- 3. Как определяется геометрически и по знаку второй производной выпуклость и вогнутость кривой?
 - 4. Алгоритм нахождения интервалов выпуклости

Интегральное исчисление

Устный опрос 1

Записать табличные интегралы:

Salincalis Taolin There palls.

1.
$$\int dx = \\
2. \int x^{\alpha} dx = \\
3. \int \frac{dx}{x} = \\
4. \int a^{x} dx = \\
B \text{ Частности, } \int e^{x} dx = \\
5. \int \cos x dx = \\
6. \int \sin x dx = \\
10. \int \frac{dx}{\cos^{2} x} = \\
7. \int \frac{dx}{\cos^{2} x} = \\
8. \int \frac{dx}{\sin^{2} x} = \\
9. \int \frac{dx}{\sqrt{a^{2} - x^{2}}} = \\
9. \int \frac{dx}{\sqrt{1 - x^{2}}} = \\
10. \int \frac{dx}{a^{2} + x^{2}} = \\
10. \int \frac{dx$$

- 11. Свойства неопределенного интеграла
- 12. Интегрирование заменой переменной (алгоритм)
- 13. Какие интегралы находятся интегрированием по частям?
- 14. Алгоритм интегрированием по частям.
- 15. Как выделить полный квадрат из квадратного трехчлена?

Устный опрос 2

- 1. Какая дробь называется рациональной??
- 2. Какая дробь называется правильной? Как разложить правильную дробь на сумму элементарных дробей?
- 3. Какая дробь называется неправильной? Как разложить неправильную дробь на сумму элементарных дробей?
- 4. Запишите четыре основных типа простейших дробей и расскажите об их интегрировании.
- 5. Метод неопределенных коэффициентов.

Устный опрос 3

- 1. Что называется определенным интегралом?
- 2. В чем состоит геометрический смысл определенного интеграла?
- 3. Свойства определенного интеграла
- 4. Формула Ньютона-Лейбница
- 5. Основные методы интегрирования определенного интеграла

Самостоятельная работа

Вариант 1

Найти неопределенные интегралы методом непосредственного интегрирования (для N_2 1-5).

56

$$\int \left(5\cos x - 3x^2 + \frac{1}{x}\right) dx$$

2.
$$\int \frac{3x^8 - x^5 + x^4}{x^5} dx$$
3.
$$\int (6^x \cdot 3^{2x} - 4) dx$$

$$3. \int \left(6^x \cdot 3^{2x} - 4\right) dx$$

$$\int \left(\frac{1}{\cos^2 x} + \frac{1}{\sqrt{1 - x^2}}\right) dx$$

$$\int \frac{dx}{1+16x^2}$$

Найти неопределенные интегралы методом подстановки (для № 6-8).

6.
$$\int (8x-4)^3 dx$$

$$\int \frac{12x^3 + 5}{3x^4 + 5x - 3} dx$$

$$8. \int x^5 \cdot e^{x^6} dx.$$

9. Найти неопределенный интеграл методом интегрирования частям: $\int (x+5)\cos x dx$

Вариант 2

Найти неопределенные интегралы методом непосредственного интегрирования (для

$$\int \left(6\sin x + 4x^3 - \frac{1}{x}\right) dx$$

$$\int \frac{x^9 - 3x^7 + 2x^6}{x^7} dx$$

$$\int (7^x \cdot 2^{2x} + 5) dx$$

$$\int \left(\frac{1}{1+x^2} + \frac{1}{\sin^2 x}\right) dx$$

$$\int \frac{dx}{\sqrt{4-9x^2}} \, .$$

Найти неопределенные интегралы методом подстановки (для № 6-8).

$$\int (7x+5)^4 dx$$

$$\int \frac{18x^2 - 3}{6x^3 - 3x + 8} dx$$

$$8. \quad \int x^7 \cdot e^{x^8} dx$$

9. Найти неопределенный интеграл методом интегрирования $\int (x-2)\sin x dx$ частям:

Самостоятельная работа № 2

Вариант 1

$$\int_{0}^{2} (4x^{2} + x - 3) dx$$

1. Вычислить определенный интеграл:

$$\int_{0}^{3} (2x-1)^{3} dx$$

- 2. Вычислить определенный интеграл методом подстановки: 2
- 3. Вычислить, предварительно сделав рисунок, площадь фигуры, ограниченной линиями: $y = -x^2 + 4$, y = 0, x = -2, x = 2.
- 4. Скорость движения точки изменяется по закону $v = 3t^2 + 2t + 1$ (м/с). Найти путь S, пройденный точкой за 10 с от начала движения.

Вариант 2

- $\int\limits_{0}^{3} \left(2x^{2}-x+4\right) \! dx$ 1. Вычислить определенный интеграл: $\int\limits_{0}^{3} \left(2x^{2}-x+4\right) \! dx$.
- 1. Вычислить определенный интеграл. $\int_{0}^{1} (3x+1)^{4} dx$
- 2. Вычислить определенный интеграл методом подстановки: 0
- 3. Вычислить, предварительно сделав рисунок, площадь фигуры, ограниченной линиями: $y = -x^2 + 1$, y = 0, x = -1, x = 1.
- 4. Скорость движения точки изменяется по закону $v = 9t^2 8t$ (м/с). Найти путь S, пройденный точкой за четвертую секунду.

Тест по теме «Интегрирование»

- 1. Найти интеграл $\int \frac{dx}{x-5}$ a) $\frac{\ln(x-5)+C}{}$ b) $\sin(x-5)+C$ c) $\cos(x-5)+C$
- 2. Найти интеграл $\int \cos 6x dx$ a) $-6\sin 6x + C$ b) $\frac{1}{6}\sin 6x + C$ c) $\frac{1}{6}\sin 6x + C$
- 3. Формула интегрирования по частям имеет вид: a) $\underbrace{\int u dv = uv - \int v du}_{}$ b) $\int u dv = \int v du + uv$ c) $\int u dv = uv$
- 4. Площадь криволинейной трапеции определяется по формуле:

$$S = \int_{a}^{b} f(x)dx = F(b) + F(a)$$
a)
$$S = \int_{a}^{b} f(x)dx = F(b) - F(a)$$

$$S = \int_{a}^{b} f(x)dx = F(a) - F(b)$$

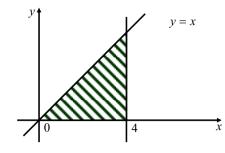
$$S = \int_{a}^{b} f(x)dx = F(a) - F(b)$$

- $\int_{3}^{3} dx$ 5. Найти интеграл $\int_{3}^{3} dx$ a)4 b) -2 c) 2
- 6. Найти интеграл $\int_0^1 (2x+1)dx$ a) <u>2</u> b) 4 c) 1

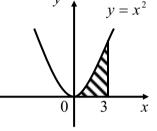
7. Скорость прямолинейного движения точки задана уравнением $v = t^2 - 8t + 3$. Найти уравнение движения.

a)
$$S = \frac{1}{3}t^3 - 4t + 3t + C$$
 b) $S = \frac{1}{3}t^3 + 4t - 3t + C$


$$b)S = \frac{1}{3}t^3 + 4t - 3t + C$$

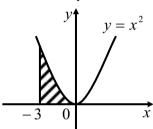

$$c)S = t^3 - 4t + 3t + C$$

8. Вычислить площадь заштрихованной фигуры



9. Вычислить площадь заштрихованной фигуры

10. Вычислить площадь заштрихованной фигуры c) 5 a) 4



11. Найти интеграл $\int 2x^{3} dx$ a) $\frac{x^{4}}{2} + C$ b) $\frac{x^{4}}{4} + C$ c) $\frac{x^{2}}{2} + C$

a)
$$\frac{x^4}{2} + C$$

$$\frac{x^4}{4} +$$

c)
$$\frac{x^2}{2} + C$$

12. Найти интеграл $\int 3\sin 3x \, dx$ a) $\cos x + C$ b) $\frac{-\cos 3x + C}{\cos 3x + C}$ c) $\cos 3x + C$

a)
$$\cos x + C$$

b)
$$\frac{-\cos 3x + C}{\cos 3x + C}$$

c)
$$\cos 3x + C$$

a)
$$\cos x +$$

$$(b)$$
 $-\cos 3x + C$

c)
$$\cos 3x + C$$

14. Найти интеграл $\int 6\cos 6x dx$

$$-6\sin 6x + C$$

b)
$$\sin 6x + C$$

a)
$$-6\sin 6x + C$$
 b) $\frac{\sin 6x + C}{\cos 6x + C}$ c) $-\frac{1}{6}\sin 6x + C$

Практическая работа № 8

Вычисление неопределённого интеграла непосредственным интегрированием, методом подстановки, по частям

Цель: проверить знание определения неопределённого интеграла, его свойства, табличные интегралы; формулы интегрирования при помощи замены переменной, умения вычислять неопределённые интегралы методом замены переменной.

Задание:

1. Найти неопределённые интегралы

1.1.
$$\int x^3 (3x+1)^2 dx$$

1.11.
$$\int 4x^2 (4x+2)^2 dx$$

1.21.
$$\int 3\sqrt{x}(2-3x)^2 dx$$

1.2.
$$\int -2\sqrt{x}(4-3x)^2 dx$$

1.2.
$$\int -2\sqrt{x}(4-3x)^2 dx$$
 1.12. $\int \frac{x^2-3x^3+2x^7}{x} dx$

$$1.22.\int \frac{2x^3 + 3x^4 - 5x^6}{x^2} dx$$

$$1.3. \int \frac{4x^3 + x^4 - -8x^5}{x^3} dx$$

$$1.3. \int \frac{4x^3 + x^4 - -8x^5}{x^3} dx \qquad 1.13. \int \frac{7x^4 - 4x^4 + 6x^4}{x^2} dx$$

$$1.23. \int \frac{x^{\frac{1}{3}} + x^{\frac{4}{7}} - x^{\frac{1}{2}}}{x} dx$$

$$1.4. \int \frac{x^{\frac{1}{4}} - x^{\frac{3}{7}} - x^{\frac{1}{3}}}{x} dx$$

$$1.4. \int \frac{x^{\frac{1}{4}} - x^{\frac{3}{7}} - x^{\frac{1}{3}}}{x} dx \qquad \qquad 1.14. \int \frac{x^{\frac{3}{4}} - x^{\frac{3}{5}} + x^{\frac{2}{3}}}{x} dx$$

$$1.24. \int \frac{\sqrt[3]{x^2} + \sqrt[4]{x^5} - \sqrt{x}}{x} dx$$

$$1.5. \int \frac{\sqrt[5]{x^2} + \sqrt[3]{x^2} - 2\sqrt{x}}{x} dx$$

$$1.5. \int \frac{\sqrt[5]{x^2} + \sqrt[3]{x^2} - 2\sqrt{x}}{x} dx \qquad 1.15. \int \frac{3\sqrt[3]{x^2} + 2\sqrt{x} - \sqrt[3]{x}}{x} dx$$

$$1.25.\int \frac{2}{\sqrt{1-x^2}} dx$$

$$1.6.\int \frac{1}{\sqrt{3-x^2}} dx$$

$$1.16.\int \frac{3}{\sqrt{4-4x^2}} dx$$

$$1.26.\int \frac{3}{\sqrt{x^2+4}} dx$$

$$1.7.\int \frac{3}{1+x^2} dx$$

$$1.17. \int \frac{5}{25 + x^2} dx$$

$$1.27. \int \frac{2}{2 + 3x^2} dx$$

$$1.8. \int \left(e^x + 2x - 4^x + 3x^{\frac{1}{2}}\right) dx; \quad 1$$

$$1.8. \int \left(e^x + 2x - 4^x + 3x^{\frac{1}{2}}\right) dx; \ 1.18. \int \left(\frac{2}{x} + 8e^x + 5^x - x^{-\frac{2}{3}}\right) dx;$$

$$1.28.\int \frac{2\sin^3 x + 3}{\sin^2 x} dx$$

$$1.9. \int \frac{2\cos^3 x + 5}{\cos^2 x} dx$$

$$1.19. \int \frac{2\cos^2 x - 4}{\cos^2 x} dx$$

$$1.29.\int \frac{1+3\cos^2 x}{\cos^2 x} dx$$

$$1.10.\int \frac{5}{3}\sqrt[3]{x^2} - 6\cos x dx$$

$$1.10. \int \frac{5}{3} \sqrt[3]{x^2} - 6\cos x dx \qquad 1.20. \int \frac{1}{2} \sin x + \sqrt[4]{x^7} dx$$

$$1.30.\int (1-x)(2-\sqrt{x})dx$$

$$2.1. \int \frac{\sqrt{3}}{9x^2 - 3} dx$$

$$2.11. \int \frac{1}{\sqrt{5x^2 + 3}} \, dx$$

$$2.21. \int \frac{1}{3x^2-2} dx$$

$$2.2. \int \frac{1}{\sqrt{9x^2 + 3}} \, dx$$

2.12.
$$\int \frac{1}{\sqrt{4-7x^2}} dx$$

$$2.22. \int \frac{1}{4x^2 + 3} dx$$

$$2.3. \int \frac{1}{9x^2 + 3} \, dx$$

$$2.13. \int \frac{\sqrt{5}}{\sqrt{3-4x^2}} dx \qquad 2.23. \int \frac{1}{\sqrt{4x^2+3}} dx$$

$$2.23. \int \frac{1}{\sqrt{4x^2 + 3}} \, dx$$

$$2.4. \int \frac{9}{\sqrt{9x^2 - 3}} \, dx$$

$$2.14. \int \frac{1}{\sqrt{2x^2-9}} dx$$

2.24.
$$\int \frac{1}{\sqrt{3-4x^2}} dx$$

$$2.5. \int \frac{1}{\sqrt{3-9x^2}} dx$$

$$2.15. \int \frac{1}{2x^2 + 7} dx$$

2.25.
$$\int \frac{1}{4x^2-3} dx$$

$$2.6. \int \frac{1}{7x^2 - 4} \, dx$$

$$2.16. \int \frac{1}{\sqrt{3x^2 + 1}} dx$$

$$2.26. \int \frac{2}{4+3x^2} dx$$

$$2.7. \int \frac{3}{\sqrt{7x^2 - 4}} dx$$

$$2.17. \int \frac{1}{3x^2 + 2} dx$$

$$2.27. \int \frac{2}{\sqrt{4x^2 - 3}} \, dx$$

$$2.8. \int \frac{1}{5x^2 + 3} dx$$

$$2.18. \int \frac{\sqrt{2}}{\sqrt{7-2x^2}} dx$$

$$2.28. \int \frac{1}{4x^2 + 7} dx$$

$$2.9. \int \frac{1}{5x^2 - 3} dx$$

$$2.19. \int \frac{\sqrt{14}}{2x^2 - 7} dx$$

$$2.29. \int \frac{1}{8x^2-9} dx$$

$$2.10. \int \frac{1}{\sqrt{3-5x^2}} dx$$

$$2.20. \int \frac{1}{8x^2+9} dx$$

$$2.30. \int \frac{1}{\sqrt{9 - 8x^2}} dx$$

$$3.1. \int \frac{dx}{(2x+1)^3 \sqrt{\ln^2(2x+1)}}$$

3.11.
$$\int \frac{dx}{(1-x)\sqrt{\ln^3(1-x)}}$$
 3.21.
$$\int \frac{\ln^7(x-7)}{(x-7)} dx$$

$$3.21. \int \frac{\ln^7(x-7)}{(x-7)} dx$$

$$3.2. \int \frac{dx}{(x+1)^3 \sqrt{\ln^2(x+1)}}$$

3.12.
$$\int \frac{\sqrt{\ln^3(1+x)}}{(1+x)} dx$$
 3.22. $\int \frac{\ln^5(x-8)}{(x-8)} dx$

3.22.
$$\int \frac{\ln^5(x-8)}{(x-8)} dx$$

$$3.3. \int \frac{dx}{(1-x)^3 \sqrt{\ln^2(1-x)}}$$

3.13.
$$\int \frac{\sqrt{\ln (2x-1)}}{(2x-1)} dx$$
 3.23.
$$\int \frac{\ln^6(x+9)}{(x+9)} dx$$

$$3.23. \int \frac{\ln^6(x+9)}{(x+9)} dx$$

3.4.
$$\int \frac{\sqrt[3]{\ln^2(1-x)}}{(1-x)} dx$$

3.14.
$$\int \frac{dx}{(x+1)^3 \sqrt{\ln (x+1)}}$$
 3.24.
$$\int \frac{\ln (3x+5)}{(3x+5)} dx$$

$$3.24. \int \frac{\ln (3x+5)}{(3x+5)} dx$$

$$3.5. \int \frac{\sqrt[5]{\ln^2(1+x)}}{(1+x)} dx$$

$$3.15. \int \frac{\sqrt{\ln^3(6+x)}}{(6+x)} dx$$

$$3.25. \int \frac{\ln^4(3x+1)}{(3x+1)} dx$$

3.6.
$$\int \frac{\sqrt[7]{\ln^2(1+x)}}{(1+x)} dx$$

$$3.16. \int \frac{\sqrt[3]{\ln (x+4)}}{(x+4)} dx$$

$$3.26. \int \frac{dx}{(x+1)\ln^2(x+1)}$$

$$3.7. \int \frac{\sqrt{\ln^5(1+x)}}{(1+x)} dx$$

3.17.
$$\int \frac{dx}{(x+2)\sqrt{\ln (x+2)}}$$
 3.27.
$$\int \frac{dx}{(x-3)\ln^4(x-3)}$$

$$3.27. \int \frac{dx}{(x-3)\ln^4(x-3)}$$

$$3.8. \int \frac{\sqrt[3]{\ln (1+3x)}}{(1+3x)} dx$$

$$3.18. \int \frac{\sqrt{\ln^7(1+x)}}{(1+x)} dx$$

3.18.
$$\int \frac{\sqrt{\ln^7(1+x)}}{(1+x)} dx$$
 3.28.
$$\int \frac{dx}{(x+3)\ln^4(x+3)}$$

$$3.9. \int \frac{\sqrt{\ln^3(3+x)}}{(3+x)} dx$$

3.19.
$$\int \frac{\ln^3(1-x)}{(1-x)} dx$$

3.29.
$$\int \frac{dx}{(x-4)\ln^5(x-4)}$$

$$3.10. \int \frac{\sqrt[3]{\ln^4(x-5)}}{(x-5)} dx$$

$$3.20. \int \frac{\ln^3(x-5)}{(x-5)} dx$$

$$3.30. \int \frac{dx}{(x+5) \ln^3(x+5)}$$

$$4.1.\int \sin^4 2x \cdot \cos 2x dx$$

$$4.11.\int \frac{\cos x}{\sqrt{(\sin x - 4)^3}} dx$$

$$4.21.\int \frac{\sin 3x}{\cos^2 3x} dx$$

$$4.2. \int \cos^7 2x \cdot \sin 2x dx$$

$$4.12. \int \frac{\sin 5x}{\sqrt{\cos 5x}} dx$$

$$4.22.\int \frac{\cos 4x}{\sin^3 4x} dx$$

$$4.3. \int \sin^3 4x \cdot \cos 4x dx$$

$$4.13. \int_{0}^{3} \sqrt{\cos 2x} \cdot \sin 2x dx$$

$$4.23. \int \sqrt{\cos^3 2x} \cdot \sin 2x dx$$

$$4.4.\int \frac{\cos 2x}{\sin^3 2x} dx$$

$$4.14. \int \sin^3 5x \cdot \cos 5x dx$$

$$4.24. \int \frac{\sin 5x}{\cos^4 5x} dx$$

$$4.5. \int \frac{\sin 3x}{\cos^4 3x} dx$$

$$4.15.\int \frac{\cos 5x}{\sqrt{\sin^3 5x}} dx$$

$$4.25.\int \frac{\sin 4x}{\sqrt[3]{\cos^2 4x}} dx$$

$$4.6. \int \frac{\sin x}{\sqrt[3]{\cos x}} dx$$

$$4.16. \int \sqrt{\cos 7x} \cdot \sin 7x dx$$

$$4.26. \int \sin^6 3x \cdot \cos 3x dx$$

$$4.7. \int \frac{\sin x}{\cos^5 x} dx$$

$$4.17.\int \sqrt{\cos^3 2x} \cdot \sin 2x dx$$

$$4.27. \int \sin^4 8x \cdot \cos 8x dx$$

$$4.8. \int \frac{\cos x}{3 - \sin x} dx$$

$$4.18.\int \frac{\cos 6x}{\sin^7 6x} dx$$

$$4.28. \int \sin^5 4x \cdot \cos 4x dx$$

$$4.9. \int \frac{\sin x}{\sqrt{\cos x + 3}} dx$$

$$4.19. \int \frac{\sin 4x}{\sqrt[3]{\cos 4x}} dx$$

$$4.29. \int \frac{\sin 2x}{\sqrt[3]{\cos^4 2x}} dx$$

$$4.10.\int \frac{\sin x}{\sqrt[3]{\cos x + 1}} dx$$

$$4.20.\int \frac{\cos 6x}{\sin^4 6x} dx$$

$$4.30.\int \frac{\cos 6x}{\sqrt{\sin^3 6x}} dx$$

$$5.1.\int \frac{\sqrt{arctg^6 3x}}{1+9x^2} dx$$

$$5.11. \int \frac{arctg^7 3x}{1 + 9x^2} dx \\ 5.20.$$

$$5.21. \int \frac{dx}{(1+x^2)\sqrt{arctgx}}$$

$$5.2. \int \frac{\sqrt{arctg^2x}}{1+x^2} dx$$

$$5.12. \int \frac{\arccos^6 3x}{1 + 9x^2} dx$$

$$5.22. \int \frac{dx}{(1+x^2)arctg^5x}$$

$$5.3.\int \frac{\sqrt{arctg^3x}}{1+x^2} dx$$

$$5.13. \int \frac{\arcsin^3 2x}{\sqrt{1-4x^2}} dx$$

$$5.13. \int \frac{\arcsin^3 2x}{\sqrt{1-4x^2}} dx \qquad \qquad 5.23. \int \frac{dx}{\sqrt{(1-x^2)}\arcsin^4 x}$$

$$5.4. \int \frac{\sqrt[3]{\arcsin x}}{\sqrt{1-x^2}} dx$$

$$5.14. \int \frac{\arcsin^4 x}{\sqrt{1-x^2}} dx$$

$$5.24. \int \frac{\sqrt[3]{arctg2x}}{1+4x^2} dx$$

$$5.5. \int \frac{\sqrt[3]{\arccos^2 x}}{\sqrt{1+x^2}} dx$$

$$5.15. \int \frac{\arccos 4x}{\sqrt{1 - 16x^2}} \, dx$$

$$5.25. \int \frac{\sqrt[3]{\arccos 2x}}{\sqrt{1-4x^2}} dx$$

$$5.6. \int \frac{\arccos^2 3x}{\sqrt{1 - 9x^2}} dx$$

$$5.16. \int \frac{\arccos^7 x}{\sqrt{1-x^2}} dx$$

$$5.26. \int \frac{dx}{\sqrt{(1-25x^2)}\arcsin 5x}$$

$$5.7. \int \frac{\arccos^3 x}{\sqrt{1 - 9x^2}} \, dx$$

$$5.17. \int \frac{\operatorname{arcctg}^4 5x}{1 + 25x^2} \, dx$$

$$5.27. \int \frac{arctg^8 3x}{1 + 9x^2} dx$$

$$5.8. \int \frac{arctg^3 2x}{1+4x^2} dx$$

$$5.18. \int \frac{\arcsin^2 5x}{\sqrt{1-25x^2}} dx$$

$$5.12. \int \frac{\arccos^2 7x}{\sqrt{1 - 49x^2}} dx$$

$$5.9. \int \frac{\arcsin^5 2x}{\sqrt{1 - 4x^2}} dx$$

$$5.19. \int \frac{1}{\left(1+x^2\right) arct g^3 x} dx$$

$$5.29. \int \frac{\sqrt[5]{arctg^3 x}}{1+x^2} dx$$

$$5.10. \int \frac{\arccos^3 2x}{\sqrt{1-4x^2}} dx$$

$$5.20.\int \frac{1}{(1+x^2)arctg^7x} dx$$
 $5.30.\int \frac{arctg^48x}{1+64x^2} dx$

$$5.30. \int \frac{arctg^4 8x}{1 + 64x^2} dx$$

$$6.1. \int \frac{x-1}{7x^2 + 4} \, dx$$

$$6.11. \int \frac{x-1}{5-2x^2} \, dx$$

$$6.21. \int \frac{2x+3}{1-3x^2} dx$$

$$6.2. \int \frac{1 - 2x}{5x^2 - 1} dx$$

$$6.12.\int \frac{2x+3}{5x^2+2} dx$$

$$6.22.\int \frac{x-3}{4x^2+1} dx$$

$$6.3.\int \frac{2x+1}{5x^2+1} dx \qquad 6.13.\int \frac{x-3}{1-4x^2} dx \qquad 6.23.\int \frac{3x-1}{4-x^2} dx \qquad 6.24.\int \frac{2x+5}{\sqrt{5x^2+1}} dx \qquad 6.14.\int \frac{5x-2}{x^2+9} dx \qquad 6.24.\int \frac{2x+5}{\sqrt{5x^2+1}} dx \qquad 6.5.\int \frac{3x-2}{2x^2+7} dx \qquad 6.15.\int \frac{1-2x}{\sqrt{3x^2+2}} dx \qquad 6.25.\int \frac{2x-4}{x^2+16} dx \qquad 6.6.\int \frac{5-x}{3x^2+1} dx \qquad 6.16.\int \frac{2x-3}{\sqrt{4-x^2}} dx \qquad 6.26.\int \frac{2x-1}{\sqrt{5-3x^2}} dx \qquad 6.27.\int \frac{3x-3}{\sqrt{1-x^2}} dx \qquad 6.27.\int \frac{3x-3}{\sqrt{1-x^2}} dx \qquad 6.29.\int \frac{3x-3}{x^2-8} dx \qquad 6.29.\int \frac{x+4}{x^2+3} dx \qquad 6.29.\int \frac{x+5}{\sqrt{4-9x^2}} dx \qquad 6.29.\int \frac{x-5}{\sqrt{4-9x^2}} dx$$

$$7.2. \int_{3}^{3} \sqrt{(1+2x)^{2}} dx$$

$$7.12. \int_{5}^{5} \sqrt{(7-3x)^{2}} dx$$

$$7.22. \int_{4}^{4} \sqrt{(1-4x)^{3}} dx$$

$$7.3. \int_{4}^{1} \frac{1}{\sqrt{(1-4x)^{3}}} dx$$

$$7.13. \int_{4}^{1} \frac{1}{\sqrt{(2+5x)}} dx$$

$$7.23. \int_{3}^{1} \frac{1}{\sqrt{(1-6x)^{2}}} dx$$

$$7.24. \int_{3}(5x-8)^{4} dx$$

$$7.5. \int_{\sqrt{1+x^{2}}}^{x} dx$$

$$7.15. \int_{\sqrt{2+x^{3}}}^{x} dx$$

$$7.25. \int_{\sqrt{2-x^{4}}}^{x^{3}} dx$$

$$7.26. \int_{x}^{x} \frac{\sin x}{\sqrt{x}} dx$$

$$7.17. \int_{x}^{x} x^{2} \sin 2x^{3} dx$$

$$7.27. \int_{x}^{x} \frac{\sin 3x}{\sqrt{x}} dx$$

$$7.28. \int_{x}^{x} (3x^{3}-1)^{5} x^{2} dx$$

$$7.29. \int_{x}^{x^{3}+1} x^{2} dx$$

$$7.20. \int_{x}^{x} \frac{e^{x}}{(e^{x}+1)^{4}} dx$$

$$7.30. \int_{x}^{x} \frac{e^{3x}}{(e^{3x}-1)^{4}} dx$$

Интегрирование по частям

Цель: Проверить уровень усвоения материала по методу интегрирования по частям

Задания

1. Найти интегралы методом интегрирования по частям

$$1.\int x \cos 6x \, dx$$

$$11.\int x \cos (x-7) \, dx$$

$$12.\int \ln (x+12) \, dx$$

$$22.\int \arcsin \frac{x}{5} \, dx$$

$$3.\int \arcsin 3x \, dx$$

$$13.\int (x-4)e^x \, dx$$

$$23.\int \arccos 2x \, dx$$

$$4.\int \arctan 8x \, dx$$

$$14.\int x e^{-6x} \, dx$$

$$1.24.\int \ln (2x-1) \, dx$$

$$5.\int x \sin (x-2) \, dx$$

$$15.\int \arctan 7x \, dx$$

$$1.26.\int \arccos \frac{x}{5} \, dx$$

$$7.\int x \sin (x+3) \, dx$$

$$1.17.\int \ln (x-7) \, dx$$

$$1.27.\int \arctan \frac{x}{4} \, dx$$

$$8.\int x \cos (x+4) \, dx$$

$$1.18.\int x \cos (x+6) \, dx$$

$$1.28.\int \arcsin \frac{x}{7} \, dx$$

$$9.\int \arccos 7x \, dx$$

$$1.20.\int \ln (x+8) \, dx$$

$$1.30.\int \arccos \frac{x}{3} \, dx$$

2. Найти интеграл $\int (\kappa x + \kappa)e^{\kappa x} dx$, где κ – порядковый номер в журнале

3. *Найти интеграл* $\int (\kappa x - 4) \sin kx \, dx$, где к – порядковый номер в журнале

Практическая работа № 9

Интегрирование рациональных дробей. Интегрирование функций, содержащих квадратный трехчлен, и рациональных дробей

Цель: Проверить уровень усвоения материала и правила нахождения интегралов, содержащих квадратный трехчлен.

Задания

1. $11.\int \frac{dx}{2x^2+3x}$ $1.\int \frac{dx}{4x^2-5x+4}$ $21.\int \frac{dx}{x^2-5x+6}$ $22.\int \frac{dx}{2x-3-4x^2}$ $2.\int \frac{dx}{x^2 + 4x + 10}$ $12.\int \frac{dx}{8-2x-x^2}$ $13.\int \frac{dx}{5x-x^2-6}$ $3.\int \frac{dx}{5x^2+2x+7}$ $23.\int \frac{dx}{3x^2-8x-3}$ $4.\int \frac{dx}{2x^2 + x - 6}$ $24.\int \frac{dx}{x^2 + 7x + 11}$ $14.\int \frac{dx}{x^2 + 4x + 25}$ $5.\int \frac{dx}{2x^2-2x+7}$ $25.\int \frac{dx}{2x^2-3x+1}$ $15.\int \frac{dx}{2x^2-8x+30}$ $16.\int \frac{dx}{3x^2-9x+6}$ $26.\int \frac{dx}{5x^2-10x+25}$ $6.\int \frac{dx}{2x^2-11x+2}$ $7.\int \frac{dx}{2x^2 + x + 2}$ $17.\int \frac{dx}{2x^2-6x+1}$ $27.\int \frac{dx}{2x^2+6x+3}$

$$8.\int \frac{dx}{3x^2 - 12x + 3}$$
9.

$$9.\int \frac{dx}{2x^2 - 2x + 5}$$

$$10.\int \frac{dx}{2x^2 - 3x - 2}$$

$$18.\int \frac{dx}{2x^2 - 3x + 2}$$

$$19.\int \frac{dx}{1-2x-3x^2}$$

$$20.\int \frac{dx}{2x^2 + 3x + 6}$$

$$28.\int \frac{dx}{x^2 - 6x + 8}$$

$$29.\int \frac{dx}{3x^2 + 5x + 1}$$

$$30.\int \frac{dx}{5-2x-x^2}$$

$$\int \frac{dx}{\sqrt{4+8x-x^2}}$$

$$\int \frac{dx}{\sqrt{3x^2 - 4x + 1}}$$

$$\int \frac{dx}{\sqrt{2-3x-2x^2}}$$

$$\int \frac{dx}{\sqrt{x^2 + 6x + 8}}$$

$$\int \frac{dx}{\sqrt{2+8x-2x^2}}$$

$$\int \frac{dx}{\sqrt{3+2x-2x^2}}$$

$$\int \frac{dx}{\sqrt{2-2x-3x^2}}$$

$$\int \frac{dx}{\sqrt{1+x-x^2}}$$

$$\int \frac{dx}{\sqrt{5x^2 - 10x + 4}}$$

$$\int \frac{dx}{\sqrt{2x+3-x^2}}$$

$$\int \frac{x+1}{2x^2+3x-4} dx$$

$$\int \frac{x+6}{3x^2+x+1} dx$$

$$\int \frac{2x-1}{3x^2-2x+6} dx$$

$$\int \frac{xdx}{2x^2 + x + 5} dx$$

$$\int \frac{dx}{\sqrt{4x^2 - 8x + 3}}$$

$$\int \frac{dx}{\sqrt{1+2x-x^2}}$$

$$\int \frac{dx}{\sqrt{4x^2 - x + 4}}$$

$$\int \frac{dx}{\sqrt{2+4x-3x^2}}$$

$$\int \frac{dx}{\sqrt{4x^2 + 2x + 4}}$$

$$\int \frac{dx}{\sqrt{3x+2-2x^2}}$$

$$\int \frac{dx}{\sqrt{2x^2 - 8x + 1}}$$

$$\int \frac{dx}{\sqrt{x^2 - 5x + 6}}$$

$$\int \frac{dx}{\sqrt{3x - 2x^2}}$$

$$\int \frac{dx}{\sqrt{2x^2 - x + 3}}$$

$$\int \frac{x+1}{2x^2 + x + 1} dx$$

$$\int \frac{x+1}{3x^2 - 2x - 3} dx$$

12.
$$\int \frac{4x+8}{4x^2+6x-13} dx$$

$$\int \frac{5x+1}{x^2 - 4x + 1} dx$$

$$\int \frac{dx}{\sqrt{2-x-2x^2}}$$

$$\int \frac{dx}{\sqrt{3x^2 - x + 5}}$$

$$\int \frac{dx}{\sqrt{1-x-x^2}}$$

$$\begin{array}{c}
23. \\
24.
\end{array}$$

$$\int \frac{dx}{\sqrt{1 - 2x - x^2}}$$

$$\int \frac{dx}{\sqrt{4-3x-x^2}}$$

$$\int \frac{dx}{\sqrt{x^2 + 5x + 1}}$$

$$\int \frac{dx}{\sqrt{3-x-x^2}}$$

$$28. \int \frac{dx}{\sqrt{x^2 + 4x + 1}}$$

$$\int \frac{dx}{\sqrt{x^2 + 3x - 1}}$$

$$\int \frac{dx}{\sqrt{5-7x-3x^2}}$$

$$\int \frac{x-4}{3x^2+x-1} dx$$

$$\int \frac{3x+1}{x^2-4x-2} dx$$

$$\int \frac{x-5}{2x^2+x-4} dx$$

23.
$$\int \frac{2x+3}{3x^2+2x-7} dx$$

$$\int \frac{x+5}{x^2+x-2} dx$$

$$\int \frac{3x-2}{5x^2-3x+2} dx$$

$$\int \frac{x+4}{2x^2-6x-8} dx$$

$$\int \frac{x+4}{2x^2-7x+1} dx$$

$$\int \frac{5x - 2}{2x^2 - 5x + 2} dx$$

$$\int \frac{4x-1}{4x^2-4x+5} dx$$

$$\int \frac{2x - 13}{\sqrt{3x^2 - 3x - 16}} \, dx$$

$$\int \frac{x-3}{\sqrt{2x^2-4x-1}} dx$$

$$\int \frac{x-1}{\sqrt{3x^2-x+5}} dx$$

$$\int \frac{2x+1}{\sqrt{1+x-3x^2}} dx$$

$$\int \frac{2x+5}{\sqrt{4x^2+8x+9}} \, dx$$

$$\int \frac{2x-10}{\sqrt{1+x-x^2}} dx$$

$$\int \frac{2x-8}{\sqrt{1-x+x^2}} dx$$

$$\int \frac{xdx}{2x^2 + 2x + 5} dx$$

$$\int \frac{x-3}{x^2 - 5x + 4} dx$$

$$\int \frac{2x-1}{2x^2+8x-6} dx$$

$$\int \frac{2-x}{4x^2 + 16x - 12} dx$$

$$\int \frac{2x-1}{3x^2-6x+9} dx$$

$$\int \frac{2x-1}{3+x-2x^2} dx$$

$$\int \frac{x-4}{\sqrt{2x^2-x+7}} dx$$

$$11. \int \frac{2x-1}{\sqrt{x^2-3x+4}} dx$$

$$\int \frac{4x+1}{\sqrt{2+x-x^2}} dx$$

$$\int \frac{5x-3}{\sqrt{2x^2+4x-5}} dx$$

$$\int \frac{3x+2}{\sqrt{4+2x-x^2}} dx$$

$$\int \frac{x-7}{\sqrt{3x^2-2x+1}} dx$$

$$\int \frac{x+5}{\sqrt{3-6x-x^2}} dx$$

$$\int \frac{x-3}{4x^2+2x-3} dx$$

$$25.$$

$$\int \frac{x+2}{3x^2 - x + 5} dx$$

$$\int \frac{3x - 2}{x^2 + 5x - 1} dx$$

$$\int \frac{x-7}{x^2+5x-1} dx$$

$$28. \int \frac{2x+1}{5x^2 + 2x + 10} dx$$

$$\int \frac{x-4}{5x^2-x+7} dx$$

$$\int \frac{3x+4}{\sqrt{2+3x-x^2}} dx$$

$$\int \frac{x-6}{\sqrt{3-2x-x^2}} dx$$

$$\int \frac{2x+3}{\sqrt{2x^2-x+6}} \, dx$$

$$\int \frac{x-9}{\sqrt{4+2x-x^2}} \, dx$$

$$\int \frac{2x+7}{\sqrt{x^2+5x-4}} \, dx$$

25.
$$\int \frac{3x - 4}{\sqrt{2x^2 - 6x + 1}} \, dx$$

26.
$$\int \frac{2x+5}{\sqrt{3x^2+9x-4}} \, dx$$

$$\int \frac{3x+4}{\sqrt{x^2+6x+13}} dx \qquad \int \frac{2x+4}{\sqrt{3x^2+x-5}} dx \qquad \int \frac{4x+3}{\sqrt{2x^2-x+5}} dx$$

$$\int \frac{3x-1}{\sqrt{2x^2-5x+1}} dx \qquad \int \frac{7x-2}{\sqrt{x^2-5x+1}} dx \qquad \int \frac{3x-7}{\sqrt{x^2-5+1}} dx$$

$$\int \frac{5x+2}{\sqrt{x^2+3x-4}} dx \qquad \int \frac{x-8}{\sqrt{4x^2+x-5}} dx \qquad \int \frac{7x-1}{\sqrt{2-3x-x^2}} dx$$

$$20. \qquad 30.$$

Интегрирование рациональных функций

Цель: Проверить уровень усвоения материала по интегрированию рациональных функций.

1. Найти неопределенные интегралы

$$9. \int \frac{6x^2 + 6x - 6}{(x^2 + x - 2)(x + 1)} dx \\
1.19 \int \frac{3x^2 + 1}{(x^2 - 1)(x - 1)} dx \\
1.20 \int \frac{3x^2 + 3x + 2}{x(x - 1)^2} dx \\
1.30 \int \frac{x^2 + x + 2}{x^2(x + 1)} dx \\
1.30 \int \frac{x^2 + x + 2}{x^2(x + 1)} dx \\
1.30 \int \frac{x^2 + x + 2}{x^2(x + 1)} dx \\
1.30 \int \frac{x^2 + x + 2}{x^2(x + 1)} dx \\
1.30 \int \frac{x^2 + x + 2}{x^2(x + 1)} dx \\
1.30 \int \frac{x^2 + x + 2}{x^2(x + 1)} dx \\
1.30 \int \frac{x^2 + x + 2}{x^2(x + 1)} dx \\
1.30 \int \frac{x^2 + x + 2}{x^2(x + 1)} dx \\
1.30 \int \frac{x^2 + x + 2}{x^2(x + 1)} dx \\
1.30 \int \frac{x^2 + x + 2}{x^2(x + 1)} dx \\
1.31 \int \frac{x^2 - 6x + 8}{(x^2 + 2x + 5)(x - 1)} dx \\
1.32 \int \frac{x^2 + 3x + 2}{x^3 - 1} dx \\
1.33 \int \frac{12 - 6x}{(x^2 - 4x + 13)(x + 1)} dx \\
1.34 \int \frac{x^2 - 6x + 8}{(x^2 + 6x + 13)(x + 1)} dx \\
1.35 \int \frac{x^2 - 3x + 2}{x^3 - 1} dx \\
1.36 \int \frac{x^2 - 4x + 2}{x^3 - 1} dx \\
1.37 \int \frac{x^2 - 3x + 2}{x^3 - 1} dx \\
1.39 \int \frac{x^2 - 3x + 2}{x^3 - 1} dx \\
1.30 \int \frac{x^2 + 3x + 2}{x^2(x + 1)} dx \\
1.30 \int \frac{x^2 + 3x + 2}{x^2(x + 1)} dx \\
1.30 \int \frac{x^2 + 3x + 2}{x^2(x + 1)} dx$$
1.21
$$\int \frac{12 - 6x}{(x^2 - 4x + 13)(x + 1)} dx \\
1.22 \int \frac{x^2 + 3x + 2}{x^3 - 1} dx \\
1.23 \int \frac{x^2 + 3x + 2}{x^3 - 1} dx \\
1.24 \int \frac{x^2 - 5x + 40}{(x + 2)(x^2 - 2x + 10)} dx \\
1.25 \int \frac{x^2 - 5x + 40}{(x^2 - 2x + 10)} dx \\
1.26 \int \frac{x + 2}{x(x^2 - 2x + 1)} dx \\
1.27 \int \frac{x^2 - 5x + 40}{(x^2 - 2x + 10)(x + 2)} dx \\
1.29 \int \frac{x^2 - 3x - 3}{(x^2 + 6x + 13)(x + 1)} dx \\
1.29 \int \frac{4x^2 + 38}{(x^2 + 2x + 5)(x - 1)} dx \\
1.29 \int \frac{5x + 13}{(x + 1)(x^2 + 6x + 13)} dx \\
1.29 \int \frac{3x^2 + 2x + 1}{(x^3 - 1)} dx \\
1.29 \int \frac{3x^2 + 2x + 1}{(x^3 - 1)} dx \\
1.29 \int \frac{3x^2 + 2x + 1}{(x^3 - 1)} dx \\
1.29 \int \frac{3x^2 + 2x + 1}{(x^3 - 1)} dx \\
1.29 \int \frac{3x^2 + 2x + 1}{(x^3 - 1)} dx \\
1.29 \int \frac{3x^2 + 2x + 1}{(x^3 - 1)} dx \\
1.29 \int \frac{3x^2 + 2x + 1}{(x^3 - 1)} dx \\
1.29 \int \frac{3x^2 + 2x + 1}{(x^3 - 1)} dx \\
1.29 \int \frac{3x^2 + 2x + 1}{(x^3 - 1)} dx \\
1.29 \int \frac{3x^2 + 2x + 1}{(x^3 - 1)} dx \\
1.29 \int \frac{3x^2 + 2x + 2}{(x^3 - 1)} dx \\
1.29 \int \frac{3x^2 + 2x + 1}{(x^3 - 1)} dx \\
1.29 \int \frac{3x^2 + 2x + 1}{(x^3 - 1)} dx \\
1.29 \int \frac{3x^2 + 2x + 1}{(x^3 - 1)} dx \\
1.29 \int \frac{3x^2 + 2x + 1}{(x^3 - 1)} dx \\
1.29 \int \frac{$$

Контрольные вопросы

- 1. Какая дробь называется рациональной?
- 2. Какая дробь называется правильной? Как разложить правильную дробь на сумму элементарных дробей?
- 3. Какая дробь называется неправильной? Как разложить неправильную дробь на сумму элементарных дробей?
- 4. Запишите четыре основных типа простейших дробей и расскажите об их интегрировании.

5.

Практическое занятие № 10

Применение определенного интеграла к решению геометрических и физических задач

Цель: реализация дифференцированного подхода к обучению; обеспечить повторение основных понятий

Задания

1.1
$$y = 8x - x^2 - 7$$
 и осью ох

1.2
$$y = x^3 - 1$$
, $y = 0$, $x = 0$

1.3
$$y = x^2 - 3x - 4$$
 и осью ОХ

$$14 \quad y^2 = 4x \quad u \quad x^2 = 4y$$

1.5
$$y = 5x - x^2 + 6$$
 и осью ОХ

1.6
$$y = x^3$$
, $y = x^2$, $x = -1$, $x = 0$

1.7
$$y = x^2 - 6x + 8$$
 и осью ОХ

1.8
$$y = x^2$$
 $y = x + 2$

1.9
$$y = x^2 - 4x - 5$$
 и осью ОХ

$$1.10 y = 6x - 3x^2 u o c b o O X$$

$$2.1 y = x^2 + 2$$
 $y = 2x + 2$

$$2.2 y = x^2 y y = 2 - x^2$$

$$23 xy = 6 y + x - 7 = 0$$

2.4
$$y = 2^x$$
, $y = 2x - x^2$, $x = 0$, $x = 2$ 3.4 $x - y + 2 = 0$, $y = 0$, $x = -1$, $x = 2$

2.5
$$y = \ln x$$
, $x = e$, $y = 0$

2.6
$$y = \frac{4}{x^2}$$
, x = 1, y = x - 1

2.7
$$y = x^2 + x$$
, $y = 1 - x^2$, $x = 0$, $x = 1$ 3.7 $x - y + 3 = 0$, $x + y - 1 = 0$, $y = 0$

$$2.8 \quad y = x^3, x = 2$$

2.8
$$y = x^3$$
, $x = 2$
2.9 $y = \cos x$, $x = 0$, $x = 2\pi$, $y = 0$
3.8 $x^2 = 3y$ и $y = x$
3.9 $x^2 + y^2 = 9$

$$2.10 \text{ y} = \sqrt{x}, \text{ y} = 2, \text{ x} = 0$$

3.1
$$y = x - y + 3$$
, $x + y - 1 = 0$, $y = 0$

$$3.2 2x - 3y + 6 = 0, y = 0 \text{ M} x = 3$$

3.3
$$y = x^2 - 2x + 3$$
 _M $y = 3x - 1$

3.4
$$x - y + 2 = 0$$
, $y = 0$, $x = -1$, $x = 2$

$$3.5 y^2 = 4x, x = 1$$
 и осью OX

3.6
$$y = x^2$$
 и $y = -3x$

$$3.7 x - y + 3 = 0, x + y - 1 = 0, y = 0$$

$$3.8 x^2 = 3 y и y = x$$

$$3.9 x^2 + y^2 = 9$$

$$3.10 \frac{x^2}{16} + \frac{y^2}{9} = 1$$

Контрольные вопросы

- 1. Что такое криволинейная трапеция?
- 2. Формула Ньютона-Лейбница
- 3. Графики элементарных функций.

Практическое занятие № 11 Исследование сходимости положительных рядов

Цель: Проверить знание признаков сходимости рядов Задания

1. Найти первые пять членов данного ряда и исследовать на сходимость:

1.
$$a$$
) $\sum_{n=1}^{\infty} \frac{1}{5n-1}$; b) $\sum_{n=1}^{\infty} \frac{3^{n}}{(2n)!}$;

$$b)\sum_{n=1}^{\infty}\frac{3^n}{(2n)!}$$

2.
$$a)\sum_{n=1}^{\infty} \frac{n+1}{n^2+2};$$
 $b)\sum_{n=1}^{\infty} \frac{(2n-1)!}{n!};$

b)
$$\sum_{n=1}^{\infty} \frac{(2n-1)!}{n!}$$

3.
$$a)\sum_{n=1}^{\infty} \frac{1}{2^n + 3};$$
 $b)\sum_{n=1}^{\infty} \frac{1}{n \cdot 5^n};$

4.
$$a$$
) $\sum_{n=1}^{\infty} \frac{1}{(5n-2)^2}$; b) $\sum_{n=1}^{\infty} \frac{1}{\sqrt[5]{n^4} \sqrt[4]{n+1}}$;

5.
$$a$$
) $\sum_{n=1}^{\infty} \frac{1}{n^3 + 3n + 2}$; b) $\sum_{n=1}^{\infty} \frac{1}{n^2}$;

6.
$$a)\sum_{n=1}^{\infty}\frac{1}{n\sqrt[5]{n+2}};$$
 $b)\sum_{n=1}^{\infty}\frac{2^{n}+1}{n^{3}};$

7.
$$a$$
) $\sum_{n=1}^{\infty} \frac{n^2}{2^n + 1}$; b) $\sum_{n=1}^{\infty} \frac{n^3 + 4}{(n^2 2)2^n}$;

8.
$$a)\sum_{n=1}^{\infty} \frac{2^n}{n!};$$
 $b)\sum_{n=1}^{\infty} \left(\frac{n}{2n+1}\right)^n;$

9.
$$a)\sum_{n=1}^{\infty}\frac{1}{2^{n}};$$
 $b)\sum_{n=1}^{\infty}\frac{1}{\ln^{n}\cdot(n+1)};$

10.
$$a$$
) $\sum_{n=1}^{\infty} \frac{1}{n!}$; b) $\sum_{n=1}^{\infty} \frac{(n+1)^n}{n^{n^3} \cdot 3n}$;

2.Написать формулу n-го члена ряда по данным первых его членов 1. 1,
$$-\frac{1}{2}$$
, $\frac{1}{3}$, $-\frac{1}{4}$ 6 $\frac{3}{2}$, $\frac{5}{4}$, $\frac{9}{8}$, $\frac{17}{16}$

2.
$$\frac{1}{4}$$
, $-\frac{2}{9}$, $\frac{3}{16}$, $-\frac{4}{25}$

7. $\frac{1}{9}$, $\frac{1 \cdot 2}{25}$, $\frac{1 \cdot 2 \cdot 3}{49}$, $\frac{1 \cdot 2 \cdot 3 \cdot 4}{81}$

$$3.1, \frac{\sqrt{2}}{1 \cdot 2}, \frac{\sqrt{3}}{1 \cdot 2 \cdot 3}, \frac{\sqrt{4}}{1 \cdot 2 \cdot 3 \cdot 4}$$
 $8.\frac{2}{5}, -\frac{3}{8}, \frac{4}{11}, -\frac{5}{14}...$

4.
$$1, \frac{1}{4}, \frac{1}{9}, \frac{1}{16}$$
..... 9. $\frac{1}{3 \cdot 6}, \frac{1}{5 \cdot 8}, \frac{1}{7 \cdot 10}, \frac{1}{9 \cdot 12}$

5.
$$\frac{2}{4}$$
, $-\frac{4}{9}$, $\frac{6}{16}$, $-\frac{8}{25}$ 10. $\frac{2}{1}$, $\frac{4}{4}$, $\frac{8}{9}$, $\frac{16}{16}$

1.
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \dots + \frac{1}{n(n+1)} + \dots$$

2.
$$\sum_{n=1}^{\infty} \frac{1}{(3n-2)\cdot(3n+1)} = \frac{1}{1\cdot 4} + \frac{1}{4\cdot 7} + \frac{1}{7\cdot 10} + \dots + \frac{1}{(3n-2)\cdot(3n+1)} + \dots$$

3.
$$\sum_{n=1}^{\infty} \frac{1}{3^{n-1}} = 1 + \frac{1}{3} + \frac{1}{3^2} + \frac{1}{3^3} + \dots + \frac{1}{3^{n-1}} + \dots;$$

4.
$$\sum_{n=1}^{\infty} \frac{2n+1}{n^{2} (n+1)^2} = \frac{3}{1 \cdot 4} + \frac{5}{4 \cdot 9} + \frac{7}{9 \cdot 16} + \dots + \frac{2n+1}{n^{2} (n+1)^2} + \dots;$$

5.
$$\sum_{n=1}^{\infty} \frac{1}{(n+1)\cdot(n+2)} = \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \frac{1}{4\cdot 5} + \dots + \frac{1}{(n+1)\cdot(n+2)} + \dots$$

6.
$$\sum_{n=1}^{\infty} \frac{1}{4n^2 - 1} = \frac{1}{3} + \frac{1}{15} + \frac{1}{35} + \dots + \frac{1}{4n^2 - 1} + \dots$$

7.
$$\sum_{n=1}^{\infty} \frac{1}{2^n} = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^n} + \dots;$$

8.
$$\sum_{n=1}^{\infty} \frac{n}{2^n} = \frac{1}{2} + \frac{2}{4} + \frac{3}{8} + \dots + \frac{n}{2^n} + \dots;$$

9.
$$\sum_{n=1}^{\infty} \left(-1\right)^{n-1} \frac{1}{n^2} = 1 - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots + \left(-1\right)^{n-1} \frac{1}{n^2} + \dots;$$

10.
$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{2n+1} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots + (-1)^n \frac{1}{2n+1} + \dots;$$

4.Исследовать на сходимость, применяя необходимый признак сходимости

1.
$$a$$
) $\sum_{n=1}^{\infty} \frac{n^2}{4n+5}$

6.
$$a)\sum_{n=1}^{\infty} \frac{n}{(2n-1)\cdot 2^n}$$

$$2. a) \sum_{n=1}^{\infty} \frac{n}{10n-1}$$

$$7. a) \sum_{n=1}^{\infty} \frac{n}{n+1}$$

3.
$$a$$
) $\sum_{n=1}^{\infty} \frac{3n+1}{5n+2}$

$$8. \ a) \sum_{n=1}^{\infty} \frac{1}{n\sqrt{n}}$$

4.
$$a)\sum_{n=1}^{\infty} \frac{n^3 - 4n^2 + 1}{n^2 - 5n}$$

9.
$$a)\sum_{n=1}^{\infty} \frac{n}{7n+1}$$

5.
$$a$$
) $\sum_{n=1}^{\infty} \frac{5n^2 + 1}{n^3 + 2n}$

10.
$$a$$
) $\sum_{n=1}^{\infty} \frac{2n^2}{3n-1}$

5.Исследовать на сходимость, используя признак Даламбера

$$1. a) \sum_{n=1}^{\infty} \frac{3^n}{n!}$$

6.
$$a$$
) $\sum_{n=1}^{\infty} \frac{(n+1)!}{3^n}$

$$2. a) \sum_{n=1}^{\infty} \frac{2n-1}{\left(\sqrt{3}\right)^n}$$

7.
$$a)\sum_{n=1}^{\infty} \frac{1}{n^4}$$

3.
$$a$$
) $\sum_{n=1}^{\infty} \frac{2^n \cdot n^2}{5^n}$

$$8. a) \sum_{n=1}^{\infty} \frac{3^n}{n(n+1)}$$

4.
$$a)\sum_{n=1}^{\infty}\frac{10^{n}}{n^{n}}$$

9.
$$a$$
) $\sum_{n=1}^{\infty} \frac{1}{(2n+1)!}$

5.
$$a)\sum_{n=1}^{\infty} \frac{n}{3\cdot 2^n}$$

10.
$$a$$
) $\sum_{n=1}^{\infty} \frac{5^n}{n^5}$

Контрольные вопросы

- 1. Определение числового ряда.
- 2. Свойства и виды рядов.
- 3. Определение суммы ряда.
- 4. Необходимый признак сходимости.
- 5. Признаки сравнения, признаки Даламбера и Коши.

Дифференциальные уравнения

Устный опрос

- 1. Дайте определение дифференциального уравнения.
- 2. Что называют порядком дифференциального уравнения?
- 3. Дайте определение общего решения дифференциального уравнения.
- 4. Что называют условиями Коши?
- 5. Что называют задачей Коши?
- 6. Дайте определение частного решения дифференциального уравнения.

- 7. Какие уравнения называются дифференциальными уравнениями ІІ порядка?
- 8. Понятие характеристического уравнения.
- 9. Общее решение уравнения характеристического уравнения.

Самостоятельная работа 1

Вариант 1

Являются ли данные функции решениями данных дифференциальных уравнений.

1.
$$y = c_1 e^{-5x} + c_2 e^x$$
, $y'' + 4y' - 5y = 0$

$$y = c_1 e^x + c_2 x e^x, \quad y'' + 2y' + y = 0$$

3.
$$y = \frac{8}{x}$$
, $y' = -\frac{1}{8}y^2$

4.
$$y = e^{4x} + 2$$
, $y' = 4y$

5. Решить задачу Коши:
$$y' = 4x^3 - 2x + 5$$
, $y(1) = 8$.

Вариант 2

Являются ли данные функции решениями данных дифференциальных уравнений.

1.
$$y = c_1 e^{-2x} + c_2 x e^{-2x}$$
, $y'' + 4y' + 4y = 0$

2.
$$y = c_1 e^{3x} + c_2 e^x$$
, $y'' - y' - 6y = 0$

3.
$$y = e^{3x} - 5$$
, $y' = 3y + 15$.

$$y = \frac{5}{x}, \quad y' = -y^2$$

5. Решить задачу Коши:
$$y' = 3x^2 - 2x + 6$$
, $y(2) = 19$.

Самостоятельная работа 2

Вариант 1

1. Найти частные решения дифференциальных уравнений:

$$a)$$
 $(x+3)ay$ $(y+2)$

a)
$$(x+3)dy-(y+2)dx=0$$
, ecnu $y=3$ npu $x=2$

b)
$$y'+2y+4=0$$

b)
$$y'+2y+4=0$$
, ecau $y=5$ npu $x=0$

2. Составить уравнение кривой, проходящей через точку $M\left(1;2\right)$ и имеющей угловой $k = \frac{1}{2x}$ в любой точке касания.

Вариант 2

1. Найти частные решения дифференциальных уравнений:

$$a) (1-x) dy - (y-1) dx = 0,$$
 если $y=3$ при $x=2$

если
$$y=3$$
 при $x=2$

b)
$$y' - y + 4 = 0$$

b)
$$y'-y+4=0$$
, ecnu $y=5$ npu $x=0$

73

2. Составить уравнение кривой, проходящей через точку M(2;1) и имеющей угло-

 $k = \frac{1}{2y}$ в любой точке касания. вой коэффициент

Самостоятельная работа 3

Вариант 1

1. Найти частные решения дифференциальных уравнений:

a)
$$v'' + v' - 6v = 0$$
.

a)
$$y'' + y' - 6y = 0$$
, $ec\pi u y = 3, y' = 1 npu x = 0$

b)
$$y'' - 6y' + 9 = 0$$

b)
$$y'' - 6y' + 9 = 0$$
, $ecnu \ y = 1, y' = 1 \ npu \ x = 0$

$$\frac{d^2s}{dt^2} = 12t - 2$$

если
$$S=4$$
, $S'=2$ при $t=1$

Вариант 2

1. Найти частные решения дифференциальных уравнений:

a)
$$v'' - 2v' - 8v = 0$$

a)
$$y''-2y'-8y=0$$
, ecan $y=4, y'=10$ npu $x=0$

b)
$$y'' - 8y' + 16 = 0$$
,

b)
$$y''-8y'+16=0$$
, $ecnu\ y=2$, $y'=9$ $npu\ x=0$

$$\frac{d^2s}{dt^2} = 12t - 2$$

если
$$S=1$$
, $S'=4$ npu $t=1$

Самостоятельная работа 4

Вариант 1

Решить следующие дифференциальные уравнения первого и второго порядка

$$y' = \frac{1}{\cos^2 x} + x^4$$
1. $y' = -6y$.

$$y' = -6y$$

2.
$$y' = -6y'$$
.
 $y' = \frac{x-1}{y^2}$.

$$y' = \frac{y}{\sqrt{1 - x^2}}.$$
4.
$$y' - 3y + 5 = 0.$$
6.
$$y'' - 7y' + 10y = 0.$$
7.
$$y'' + 4y' + 4y = 0.$$

$$y'-3y+5=0$$

$$y'' - 7y' + 10y = 0$$

$$y'' + 4y' + 4y = 0$$

Вариант 2

Решить следующие дифференциальные уравнения первого и второго порядка.

$$y' = \frac{1}{\sqrt{1 - x^2}} - x^7$$
1.

2.
$$y' = 8y$$

$$y' = \frac{2x}{y^2}.$$

4.
$$y' = \frac{y}{1+x^2}$$

5. $y' + 8y - 3 = 0$
6. $y'' + 8y' + 16y = 0$
7. $y'' - y' - 12y = 0$

$$y' + 8y - 3 = 0$$

$$6 \quad y'' + 8y' + 16y = 0$$

7.
$$y'' - y' - 12y = 0$$

Практическое занятие № 12

Дифференциальные уравнения с разделяющимися переменными. Однородные линейные дифференциальные уравнения первого порядка

Цель: Реализация дифференцированного подхода к обучению; обеспечить повторение основных понятий

Задания

1. Проверить, являются ли решениями данных дифференциальных уравнений указанные функции (C – постоянная)

$$x^{2}y'-2xy = 3; y = 3x^{2} - \frac{1}{x};$$

$$xy' = y - 1; y = Cx + 1;$$

$$\int_{2\pi} dy + ytgxdx = 0; y = 2\cos x;$$

6.
$$xy' = y - 1$$
; $y = Cx + 1$;
7. $y'ctg + y = 2$; $y = \cos x + 2$;

$$y'-yctgx = ctgx; y = C\sin x - 1;$$

$$y'x^2 = 3 + 2xy; y = -\frac{1}{x} + 3x^2 + C;$$

4.
$$xy^e + 2y = e^{-x^3}$$
; $y = 3 - e^{-x^3}$;

9.
$$y = xy + (y')^2$$
; $y = 2x + 4$;

$$dy = 3x2ydx; y = Ce^{x^3};$$

$$\frac{y}{10.} = 3x - y'; y = \frac{C}{x} + x^2;$$

2. Решить дифференциальное уравнение первого порядка с разделенными переменными.

$$\frac{dy}{\sqrt{y}} - \frac{dx}{x} = 0;$$

$$tgtdt + \frac{ds}{s} = 0;$$

$$\frac{dy}{1+y^2} = \frac{dx}{\sqrt{x}};$$

$$7. \ \sqrt{y} dy = 3\sqrt{x} dx;$$

$$\frac{dy}{y} = \frac{dx}{x-1}$$
;

8.
$$dy = (x^2 - 1)dx$$
;

$$_{4} e^{x} dx = y dy;$$

$$\frac{dy}{y+1} = \frac{dx}{x-1};$$

$$5 \quad 2ydy = (1 - 3x^2)dx;$$

$$\frac{dy}{10.} = \frac{dx}{1+x^2};$$

3. Найти частное решение дифференциальных уравнений первого порядка с разделяющимися переменными.

$$ydx = ctgxdy = 0; y(\frac{\pi}{3}) = -1;$$

$$y' + \frac{tgx}{ctgy} = 0; y = \frac{\pi}{6}, x = \frac{\pi}{3};$$

$$_{3}$$
 $(1+x^{2})dy - 2xydx = 0; y = 4; x = -1;$

4.
$$(1+x^3)dy = 3x^2ydx$$
; $y = 2$; $x = 0$;

5.
$$(1+y^2)dx = xydy; y = 1; x = 2;$$

6.
$$2ydx = (1+x)dy$$
; $y(1) = 4$;

$$\frac{dy}{\sqrt{y}} + dx = \frac{dx}{\sqrt{x}}; y = 1; x = 0;$$

8.
$$(2x-1)dy = (y+1)dx$$
; $y(5) = 0$;

9.
$$(1-x^2)dy + xydx = 0; y = 4; x = 0;$$

10.
$$(1+x^2)dy - 2x(y+3)dx = 0; y(0) = -1;$$

4. Решить линейное дифференциальное уравнение 1 порядка

$$y' + 3y = e^{2x}$$

$$y' + \frac{3}{x}y = \frac{2}{x^2}$$
 6.

2.
$$y' - y = xe^x$$

$$y' + \frac{3y}{x} = x$$

3.
$$y' - 2y = x$$

$$y' - \frac{y}{x} = -x$$
8.

4.
$$xy' = y + 2x^3$$

$$y' - \frac{y}{x} = -1$$

$$x^2y' + xy + 2 = 0$$

$$y' - y = \frac{e^x}{x}$$
10.

Контрольные вопросы

- 1. Какое уравнение называется дифференциальным уравнением.
- 2. Что называется решением дифференциального уравнения.
- 3. Общее решение дифференциального уравнения.
- 4. Написать общий вид дифференциального уравнения 1-го порядка с разделяющимися переменными. Задача Коши.
- 5. Каков общий вид однородного дифференциального уравнения 1-го порядка?
- 6. Алгоритм решения однородного дифференциального уравнения первого порядка.

Практическое занятие № 13

Дифференциальные уравнения вида y = f''(x). Однородные линейные

дифференциальные уравнения второго порядка с постоянными коэффициентами

Цель: Проверить навыки решения дифференциальных уравнений II порядка Залания

Найти общее решение дифференциального уравнения:

1.
$$a)y''+4y = 0;b)y''-10y'+25y = 0;c)y''+3y'+2y = 0.$$

2.
$$a)y''-y'-2y=0$$
; $b)y''+9y=0$; $c)y''+4y'+4y=0$;

3.
$$a)y''-4y=0;b)y''-4y'+13y=0;c)y''-3y'+2y=0;$$

4.
$$a)y''-5y'+6y=0;b)y''-+3y'=0;c)y''+2y'+5y=0;$$

5.
$$a)y''-2y'+10y = 0; b)y''+y'-2y = 0; c)y''-2y' = 0;$$

6.
$$a)y''-4y=0;b)y''+2y'+17y=0;c)y''-y'-12y=0;$$

7.
$$a)y''+y'-6y=0$$
; $b)y''+9y'=0$; $c)y''-4y'+20y=0$;

8.
$$a)y''-49y = 0; b)y''-4y'+5y = 0; c)y''+2y'-3y = 0;$$

9.
$$a)y''+7y'=0$$
; $b)y''-5y'+4y=0$; $c)y''+16y=0$;

10.
$$a)y''-6y'+8y=0;b)y''+4y'+5y=0;c)y''+5y'=0;$$

11.
$$a)4y''-8y'+3y=0;b)y''-3y'=0;c)y''-2y'+10y=0;$$

12.
$$a)y''+4y'+20y = 0; b)y''-3y'-10y = 0; c)y''-16y = 0;$$

13.
$$a)9y''+6y'+y=0;b)y''-4y'-21y=0;c)y''+y=0;$$

14.
$$a)2y''+3y'+y=0;b)y''+4y'+8y=0;c)y''-6y'+9y=0;$$

15.
$$a)y''-10y'+21y=0;b)y''-2y'+2y=0;c)y''+4y=0;$$

16.
$$a)y''+6y'=0;b)y''+10y'+29y=0;c)y''-8y'+7y=0;$$

17.
$$a)y''+25y = 0; b)y''+6y'+9y = 0; c)y''+2y'+2y = 0;$$

18.
$$a)y''-3y'=0$$
; $b)y''-7y'-8y=0$; $c)y''+4y'+13y=0$;

19.
$$a)y''-3y'-4y=0;b)y''+6y'+13y=0;c)y''+2y'=0;$$

20.
$$a)y''+25y'=0$$
; $b)y''-10y'+16y=0$; $c)y''-8y'z=16y=0$;

21.
$$a)y''-3y'-18y = 0; b)y''-6y' = 0; c)y''+2y'+5y = 0;$$

22.
$$a)y''-6y'+13y = 0; b)y''-2y'-15y = 0; c)y''-8y' = 0;$$

23.
$$a)y''+2y'+y=0;b)y''+6y'+25y=0;c)y''-4y'=0;$$

24.
$$a)y''+10y'=0$$
; $b)y''-6y'+8y=0$; $c)4y''+4y'+y=0$;

25.
$$a)y''+5y=0;b)9y''-6y'+y=0;c)y''+6y'+8y=0;$$

26.
$$a)y''+6y'+10y=0$$
; $b)y''-4y'+4y=0$; $c)y''-5y'+4y=0$;

27.
$$a)y''-y = 0;b)4y''+8y'-5y = 0;c)y''-6y'+10y = 0;$$

28.
$$a)y''+8y'+25y=0;b)y''+9y'=0;c)9y''+3y'-2y=0;$$

29.
$$a)6y''+7y'-3y = 0; b)y''+16y = 0; c)4y''-4y'+y = 0;$$

30.
$$a)9y''-6y'+y=0;b)y''+12y'+37y=0;c)y''-2y'=0;$$

Контрольные вопросы

- 1. Дайте определение дифференциального уравнения.
- 2. Что называют порядком дифференциального уравнения?
- 3. Дайте определение общего решения дифференциального уравнения.
- 4. Что называют условиями Коши?
- 5. Что называют задачей Коши?
- 6. Дайте определение частного решения дифференциального уравнения.
- 7. Какие уравнения называются дифференциальными уравнениями II порядка?
- 8. Понятие характеристического уравнения.

Комплексные числа

Устный опрос 1

- 1. Что такое комплексное число: действительная часть числа, мнимая часть числа?
- 2. Что такое мнимая единица?

- 3. Какие числа называются сопряженными?
- 4. Как представить комплексное число графически?
- 5. Что такое модуль числа?
- 6. Что такое аргумент числа?
- 7. Сколько может быть модулей и аргументов у комплексного числа?
- 8. Как найти аргумент числа?
- 9. Как найти сумму, разность, произведение, частное комплексных чисел?

Устный опрос 2

- 1. Что такое тригонометрическая форма записи комплексного числа?
- 2. Как перевести число в тригонометрическую форму?
- 3. Как найти произведение, частное чисел в тригонометрической форме?
- 4. Как найти возвести число в тригонометрической форме в целую степень?
- 5. Как найти корень n-ной степени из числа в тригонометрической форме?
- 6. Формула Эйлера
- 7. Как представить комплексное число в показательной форме?
- 8. Как связаны тригонометрическая и показательная формы записи комплексных чисел?
- 9. Как найти произведение, частное чисел в показательной форме?
- 10. Как найти возвести число в показательной форме в целую степень?
- 11. Как найти корень п-ной степени из числа в показательной форме?

Самостоятельная работа №1

Вариант 1

1. Выполнить действия и записать результат в тригонометрической форме:

$$\frac{\sqrt{3}-i^{17}}{i^{12}}$$
; $\frac{(1+i)^8}{(1-i)^6}$. 2. Выполнить действия и записать результат в показательной форме:

a)
$$3\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)^2$$
; 6) $\frac{-1+i}{\sqrt{2}e^{i\pi/3}}$.

Вариант 2

1. Выполнить действия и записать результат в тригонометрической форме:

a)
$$\frac{2i^5}{1+i^{11}}$$
; $\frac{(1-i)^2}{(1+i)^4}$

2. Выполнить действия и записать результат в показательной форме:

a)
$$7\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)^3$$
; 5) $\frac{1+i}{\sqrt{2}e^{i\pi/2}}$.

Вариант 3

1. Выполнить действия и записать результат в тригонометрической форме:

a)
$$\frac{1+i\sqrt{3}}{1-i\sqrt{3}}$$
; $\frac{(i-1)^3}{i^{12}+i^{31}}$

2. Выполнить действия и записать результат в показательной форме:

a)
$$\frac{24(\cos 75^{\circ} + i \sin 75^{\circ})}{3(\cos 30^{\circ} + i \sin 30^{\circ})};$$
6)
$$\frac{e^{-i\pi/3}}{(-\sqrt{3} + i)^{5}}.$$

Вариант 4

1. Выполнить действия и записать результат в тригонометрической форме:

a)
$$\frac{5+i}{2+i\cdot 3}$$
; 6) $\frac{3i^{15}+(i\sqrt{3})^2}{i^9}$

2. Выполнить действия и записать результат в показательной форме:

a)
$$2\left(\cos\frac{11\pi}{12} + i\sin\frac{11\pi}{12}\right)^2$$
; $\left(\cos\frac{1\pi}{12} + i\sin\frac{1\pi}{12}\right)^2$; $\left(\cos\frac{1\pi}{12} + i\sin\frac{1\pi}{12}\right)^2$.

Вариант 5

1. Выполнить действия и записать результат в тригонометрической форме:

a)
$$2\left(\cos\frac{11\pi}{12} + i\sin\frac{11\pi}{12}\right)^2$$
; $\frac{\left(-\sqrt{2} - i\sqrt{2}\right)^6}{12e^{-i\pi/2}}$

2. Выполнить действия и записать результат в показательной форме:

a)
$$4\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)^{10}$$
; $\frac{(1+i)^{15}}{2^7 \cdot e^{i\pi/2}}$

Вариант 6

1. Выполнить действия и записать результат в тригонометрической форме:

a)
$$\frac{1-2i}{1+3i}$$
; $\frac{(i^9-1)(i^9+1)}{1-i}$.

2. Выполнить действия и записать результат в показательной форме:

a)
$$3\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right)^4$$
; $\frac{e^{i\pi/3} \cdot i}{\left(\sqrt{3} - i\right)^4}$.

Самостоятельная работа №2

Вариант 1

1. Составить квадратное уравнение по его корням $x_1 = 5 - 3i$, $x_2 = 5 + 3i$

2. Выполнить действия:

a)
$$(2+i)+(-3-i)-(4-3i)$$
 b) $\frac{5+3i}{5-3i}$

3. Построить слагаемые $z_1 = -2 + i$, $z_2 = 2 - 3i$ и их сумму.

4. Выполнить действия:

a)
$$(\cos 12^{\circ} + i \sin 12^{\circ})^{45}$$
 b) $\left(2e^{-\frac{15\pi}{8}}\right)^{8}$

$$z = \frac{1-i}{e^{-\frac{3\pi}{4}i}}$$
 5. Выполнить действия и записать результат в показательной форме:

79

- 1. Решить квадратное уравнение $x^2 6x + 34 = 0$
- 2. Выполнить действия:

$$(3+5i)\cdot(3-5i)\cdot(-2+i)$$

- 3. Построить комплексные числа $z_1 = 2 3i$, $z_2 = 1 + 2i$, а также им сопряженные и противоположные.
- 4. Выполнить действия:

$$a)\frac{-1+i\sqrt{3}}{e^{-i\frac{\pi}{3}}}$$

$$b) \left(2 \left(\cos \frac{\pi}{3} + i \sin \frac{\pi}{3} \right) \right)^{-6}$$

5. Выполнить действия и записать результат в показательной форме:

Практическая работа № 14 Действия над комплексными числами

Цель: Проверить умения выполнять действия над комплексными числами в алгебраической форме

Задания

1. Даны комплексные числа вычислить сумму $z = z_1 + z_2$ аналитически и графически,

$$z_1 - z_2; \quad z_1 \cdot z_2; \quad \frac{z_1}{z_2}$$

найти модуль и аргумент z, a так же

1.
$$z_1 = 5 - i$$
; $z_2 = 1 + 3i$

2.
$$z_1 = 3 - 4i$$
; $z_2 = 1 + i$

3.
$$z_1 = 1 - 5i$$
; $z_2 = 1 + 4i$

4.
$$z_1 = 1 + 3i$$
; $z_2 = 7 - i$

5.
$$z_1 = 1 - i$$
; $z_2 = 7 + 3i$

6.
$$z_1 = 1 - i$$
; $z_2 = 5 - 4i$

7.
$$z_1 = 3 + 4i$$
; $z_2 = -2 + i$

8.
$$z_1 = -i$$
; $z_2 = 7 + 4i$

9.
$$z_1 = 6 - 5i$$
; $z_2 = 1 + i$

10.
$$z_1 = -1 + 5i$$
; $z_2 = 2 - 5i$

11.
$$z_1 = 5 - 7i$$
; $z_2 = 1 - 3i$

12.
$$z_1 = -3 - 2i$$
; $z_2 = -1 + 7i$

13.
$$z_1 = 5 + 2i$$
; $z_2 = 2 - i$

14.
$$z_1 = 1 + 5i$$
; $z_2 = 2 - 3i$

15.
$$z_1 = 1 - 4i$$
; $z_2 = 1 + 2i$

16.
$$z_1 = 5 + i$$
; $z_2 = 1 - 2i$

17.
$$z_1 = 3 + i;$$
 $z_2 = 5 - 2i$

18.
$$z_1 = 1 - 5i$$
; $z_2 = 1 + 3i$

19.
$$z_1 = 5 - i;$$
 $z_2 = 1 + 3i$

20.
$$z_1 = 1 + 3i$$
; $z_2 = -2 + 5i$

21.
$$z_1 = 3 + 4i$$
; $z_2 = -2 + i$

22.
$$z_1 = 5 - 2i$$
; $z_2 = -2 + i$

23.
$$z_1 = 7 - 2i$$
; $z_2 = 5 + 3i$

24.
$$z_1 = 7 - 3i$$
; $z_2 = -1 + 4i$

25.
$$z_1 = -2 + 3i$$
; $z_2 = 5 - 4i$

26.
$$z_1 = -3 + 2i$$
; $z_2 = 6 + 5i$

27.
$$z_1 = -1 + 7i$$
; $z_2 = 4 - 5i$

28.
$$z_1 = 4 + 5i$$
; $z_2 = 1 - 2i$

29.
$$z_1 = -1 + 3i$$
; $z_2 = 6 - 5i$

30.
$$z_1 = -3 - 2i$$
; $z_2 = 4 + 3i$

2. Выполнить действия над комплексными числами в алгебраической форме

$$\frac{1+i}{1-2i} - \left(\frac{4}{5} - \frac{2}{5}i\right);$$

3. Выполнить действия над комплексными числами:

$$z_{1} = 1 + i, z_{2} = -\sqrt{3} + i;$$

$$z_{1} = 1 - i, z_{2} = -\sqrt{3} - i;$$

$$z_{1} = -1 + i, z_{2} = \frac{1}{2} + \frac{\sqrt{3}}{2}i;$$

$$z_{1} = -1 - i, z_{2} = \frac{1}{2} - \frac{\sqrt{3}}{2}i;$$

$$z_{1} = 1 - i, z_{2} = \frac{1}{2} - \frac{\sqrt{3}}{2}i;$$

$$z_{1} = -1 - i, z_{2} = \frac{1}{2} - \frac{\sqrt{3}}{2}i;$$

$$z_{1} = -1 - i, z_{2} = \frac{1}{2} - \frac{\sqrt{3}}{2}i;$$

$$z_{1} = -1 - i, z_{2} = \frac{1}{2} - \frac{\sqrt{3}}{2}i;$$

$$z_{1} = -1 - i, z_{2} = \frac{1}{2} - \frac{\sqrt{3}}{2}i;$$

$$z_{1} = -1 - i, z_{2} = \frac{1}{2} - \frac{\sqrt{3}}{2}i;$$

$$z_{1} = -1 - i, z_{2} = \frac{1}{2} - \frac{\sqrt{3}}{2}i;$$

$$z_{1} = -1 - i, z_{2} = \frac{1}{2} - \frac{\sqrt{3}}{2}i;$$

$$z_{1} = -1 - i, z_{2} = \frac{1}{2} - \frac{\sqrt{3}}{2}i;$$

$$z_{1} = -1 - i, z_{2} = \frac{1}{2} - \frac{\sqrt{3}}{2}i;$$

$$z_{1} = -1 - i, z_{2} = \frac{1}{2} - \frac{\sqrt{3}}{2}i;$$

$$z_{1} = -1 - i, z_{2} = \frac{1}{2} - \frac{\sqrt{3}}{2}i;$$

$$z_{1} = -1 - i, z_{2} = \frac{1}{2} - \frac{\sqrt{3}}{2}i;$$

$$z_{1} = -1 - i, z_{2} = \frac{1}{2} - \frac{\sqrt{3}}{2}i;$$

$$z_{1} = -1 - i, z_{2} = \frac{1}{2} - \frac{\sqrt{3}}{2}i;$$

$$z_{1} = -1 - i, z_{2} = \frac{1}{2} - \frac{\sqrt{3}}{2}i;$$

$$z_{1} = -1 - i, z_{2} = \frac{1}{2} - \frac{\sqrt{3}}{2}i;$$

$$z_{1} = -1 - i, z_{2} = \frac{1}{2} - \frac{\sqrt{3}}{2}i;$$

$$z_{1} = -1 - i, z_{2} = \frac{1}{2} - \frac{\sqrt{3}}{2}i;$$

$$z_{1} = -1 - i, z_{2} = \frac{1}{2} - \frac{\sqrt{3}}{2}i;$$

$$z_{1} = -1 - i, z_{2} = \frac{1}{2} - \frac{\sqrt{3}}{2}i;$$

$$z_{1} = -1 - i, z_{2} = \frac{1}{2} - \frac{\sqrt{3}}{2}i;$$

$$z_{1} = -1 - i, z_{2} = \frac{1}{2} - \frac{\sqrt{3}}{2}i;$$

$$z_{1} = -1 - i, z_{2} = \frac{1}{2} - \frac{\sqrt{3}}{2}i;$$

$$z_{1} = -1 - i, z_{2} = \frac{1}{2} - \frac{\sqrt{3}}{2}i;$$

$$z_{1} = -1 - i, z_{2} = \frac{1}{2} - \frac{\sqrt{3}}{2}i;$$

$$z_{1} = -1 - i, z_{2} = \frac{1}{2} - \frac{\sqrt{3}}{2}i;$$

$$z_{1} = -1 - i, z_{2} = \frac{1}{2} - \frac{1}{2} - \frac{1}{2}i;$$

$$z_{1} = -1 - i, z_{2} = \frac{1}{2} - \frac{1}{2}i;$$

$$z_{1} = -1 - i, z_{2} = \frac{1}{2} - \frac{1}{2}i;$$

$$z_{2} = -1 - i, z_{2} = \frac{1}{2} - \frac{1}{2}i;$$

$$z_{1} = -1 - i, z_{2} = \frac{1}{2} - \frac{1}{2}i;$$

$$z_{1} = -1 - i, z_{2} = \frac{1}{2}i;$$

$$z_{1} = -1 - i, z_{2} = \frac{1}{2}i;$$

$$z_{2} = -1 - i, z_{2} = \frac{1}{2}i;$$

$$z_{1} = -1 - i, z_{2} = \frac{1}{2}i;$$

$$z_{1} = -1 - i, z_{2} = \frac{1}{2}i;$$

$$z_{2} = -1 - i, z_{2} = \frac{1}{2}i;$$

$$z_{1} = -1 - i, z_{2} = \frac{1}{2}i;$$

$$z_{2} = -1 - i, z_{2} = \frac{1}{2}i;$$

$$z_{1} = -1 - i, z_{2} =$$

Контрольные вопросы

- 1. Что такое комплексное число: действительная часть числа, мнимая часть числа?
- 2. Что такое мнимая единица?
- 3. Какие числа называются сопряженными?
- 4. Как представить комплексное число графически?
- 5. Что такое модуль числа?
- 6. Что такое аргумент числа?
- 7. Сколько может быть модулей и аргументов у комплексного числа?
- 8. Как найти аргумент числа?
- 9. Как найти сумму, разность, произведение, частное комплексных чисел?

Контрольная работа за 2 семестр Вариант 1

- 1. Найти производные функций
 - а) заданной неявно следующим уравнением: $e^{xy} x^3 y^3 = 3$
 - б) логарифмическим дифференцированием: $y = (\sin x)^{3x}$
- 2. Найти интеграл от рациональной дроби: $\int \frac{3x+8}{(x-2)(x+5)} dx$
- 3. Решить дифференциальное уравнение:

a)
$$(y-1)^2 dx + (1-x)^3 dy = 0$$
; 6) $\frac{dy}{dx} + y \frac{1}{x+1} = \frac{\cos x}{x+1}$

4. Исследовать на сходимость ряд по признаку Даламбера:

$$1 + \frac{3}{1} + \frac{3^2}{1 \cdot 2} + \frac{3^3}{1 \cdot 2 \cdot 3} + \frac{3^4}{1 \cdot 2 \cdot 3 \cdot 4} + \dots$$

Вариант 2

- 1. Найти производные функций
 - а) заданной неявно следующим уравнением: $y = \cos(x + y)$
 - б) логарифмическим дифференцированием: $y = (\cos 2x)^{\sin x}$
- 2. Найти интеграл от рациональной дроби: $\int \frac{7x+12}{(x-1)(3x+1)} dx$

3. Решить дифференциальное уравнение:

a)
$$x\sqrt{9-y^2}dx - y(4+x^2)dy = 0;$$
 6) $\frac{dy}{dx} + y \cdot tgx = \frac{1}{\cos x}$

4. Исследовать на сходимость ряд по признаку Даламбера:

$$\frac{2}{5} + \frac{4}{25} + \frac{6}{125} + \frac{8}{625} + \dots$$

Вариант 3

1. Найти производные функций

- а) заданной неявно следующим уравнением: $x^3 y^3 = x^2y^2$
- б) логарифмическим дифференцированием: $y = (\sin 2x)^{\cos x}$
- 2. Найти интеграл от рациональной дроби: $\int \frac{x^2+x+2}{x^3+x^2} dx$
- 3. Решить дифференциальное уравнение:

a)
$$3x\sqrt[3]{y}dx + (1-x^2)dy = 0;$$
 6) $\frac{dy}{dx} + 2xy = 2xe^{x^2}$

4. Исследовать на сходимость ряд по признаку Даламбера:

$$\frac{3}{1^2} + \frac{3^2}{2^2} + \frac{3^3}{3^2} + \frac{3^4}{4^2} + \dots$$

Вариант 4

1. Найти производные функций

- а) заданной неявно следующим уравнением: xy = ctgy
- б) логарифмическим дифференцированием: $y = x^{\sin 3x}$

2. Найти интеграл от рациональной дроби: $\int \frac{dx}{x^3-x^2}$

3. Решить дифференциальное уравнение:

a)
$$(x^2 + 1)dy - xydx = 0$$
; 6) $\frac{dy}{dx} + 2y = e^x$

4. Исследовать на сходимость ряд по признаку Даламбера:

$$\frac{1}{1 \cdot 2 \cdot 3} + \frac{1}{1 \cdot 2 \cdot 3 \cdot 4} + \frac{1}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5} + \dots$$