Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Пономарева Светлана Викторовна Должность: Проректор по УР и НО Дата подписания: 26.09.2023 14:50:24 Уникальный программный ключ:

bb52f959411e64617366ef2977b97e87139b1a2d МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

(ДГТУ)

АВИАЦИОННЫЙ КОЛЛЕДЖ

	УТВЕРЖДАЮ
	Директор колледжа
	А.И. Азарова
личная подп	ись инициалы, фамилия
«»	2020 г.
Рег	№

VEDEDMERAIO

Фонд оценочных средств

для проведения текущего контроля и промежуточной аттестации

в форме дифференцированного зачета

по дисциплине ОП.10 «Электрические машины»

в рамках программы подготовки специалистов среднего звена

по специальности СПО

15.02.07 Автоматизация технологических процессов и производств(по отраслям)

Разраоотчик:	
Преподаватель Авиационного колледжа	ДГТУ (М.А.Бобков
	« <u>31</u> » <u>августа</u> <u>2020г.</u>
Фонд оценочных средств рассмотр комиссии «Автоматизация технологиче лям)»	ен и одобрен на заседании цикловой еских процессов производств(по отрас-
Протокол № от «»	_ <u>2020 г</u>
Председатель цикловой комиссии	В.Н.Панков
	«»2020г.

Фонд оценочных средств предназначен для обучающихся специальности 15.02.07 Автоматизация технологических процессов производств(по отраслям)

Фонд оценочных средств для проведения текущего контроля и промежуточной аттестации в форме дифференцированного зачета по дисциплине ОП.10 «Электрические машины», разработан на основе ФГОС СПО по специальности 15.02.07 Автоматизация технологических процессов производств(по отраслям) (утвержден приказом Министерства образования и науки РФ от 12 ноября 2009 г. № 582), рабочей программы по дисциплине ОП.10 «Электрические машины» (утв. Директором колледжа).

СОДЕРЖАНИЕ

1.	Область применения комплекта оценочных средств	4
2.	Формы промежуточной аттестации по дисциплине	4
3.	Результаты освоения дисциплины, подлежащие проверке	4
4.	Оценочные средства	7
5.	Лист регистрации изменений по учебной дисциплине	13
6.	Текущий контроль	14

1. Область применения комплекта оценочных средств

Фонд оценочных средств предназначен для оценки результатов освоения дисциплины OП.10. Электрические машины.

2. Формы промежуточной аттестации по дисциплине ОП.10. Электрические машины

Таблица 2.1

Наименование дисциплины	Формы промежуточной аттестации
Электрические машины	Дифференцированный зачет

3. Результаты освоения дисциплины ОП.10. Электрические машины, подлежащие проверке

3.1. Профессиональные и общие компетенции

Дисциплина ОП.10. Электрические машины осуществляет формирование профессиональных и общих компетенций:

Таблица 3.1

Профессиональные компетенции			
ПК 1.1. Проводить анализ работоспособности измерительных приборов и средств автоматизации.			
ПК 1.2. Диагностировать измерительные приборы и средства автоматического управления.			
ПК 1.3. Производить поверку измерительных приборов и средств автоматизации			

Таблица 3.2

	Таолица 5.2
Общие компетенции	Показатели оценки результата
ОК 1. Понимать сущность и социальную значимость своей будущей профессии, проявлять к ней устойчивый интерес.	 аргументированность сущности и социальной значимости своей будущей профессии
ОК 2. Организовывать собственную деятельность, выбирать типовые методы и способы выполнения профессиональных задач, оценивать их эффективность и качество.	 рациональное распределение времени на все этапах обучения; своевременность сдачи заданий, отчетов по лабораторным работам;
ОК 3. Принимать решения в стандартных и нестандартных ситуациях и нести за них ответственность.	 безошибочность решения стандартных и нестандартных профессиональных задач; обоснованность и аргументированность принимаемых решений в стандартных и нестандартных ситуациях

Общие компетенции	Показатели оценки результата
ОК 4. Осуществлять поиск и использо-	– быстрый и точный поиск необходимой ин-
вание информации, необходимой для	формации;
эффективного выполнения профессио-	– обоснованность выбора и оптимальность
нальных задач, профессионального и	состава источников, необходимых для решения
личностного развития.	поставленной задачи;
ОК 5. Использовать информационно-	– решение нетиповых профессиональных задач
коммуникационные технологии в про-	в сфере с использованием различных источников
фессиональной деятельности.	информации;
ОК 6. Работать в коллективе и команде,	– ясность и аргументированность изложения
эффективно общаться с коллегами, ру-	собственного мнения при групповом обсужде-
ководством, потребителями.	нии;
	– соблюдение мер конфиденциальности и ин-
	формационной безопасности;
ОК 7. Брать на себя ответственность за	– ответственность за работу членов команды
работу членов команды (подчиненных),	(подчиненных), за результат выполнения зада-
результат выполнения заданий.	ний;
	– контролировать качество выполненной ра-
	боты и нести ответственность в рамках про-
	фессиональной компетентности;
ОК 8. Самостоятельно определять зада-	– организация самостоятельных занятий при
чи профессионального и личностного	изучении профессиональных знаний и отече-
развития, заниматься самообразовани-	ственного и зарубежного опыта;
ем, осознанно планировать повышение	– аргументированность необходимости по-
квалификации.	вышения квалификации;
ОК 9. Ориентироваться в условиях	– анализ и использование инноваций в обла-
частой смены технологий в профессио-	сти профессиональной деятельности;
нальной деятельности.	– отслеживание изменений в области профес-
	сиональной деятельности;

Фонд оценочных средств позволяет оценивать:

3.2 Освоение умений и усвоение знаний:

Таблица 3.3

3.2 OCBUCH	таолица 5.5	
Умения и знания Показатели оценки результата		Формы и методы контроля
		и оценки
		(с указанием номера зада-
		ния для проверки)
У1. Подбирать	-Выполнение расчёта:	Текущий контроль:
по справочным	а) токов XX, потерь, КПД, коэффици-	Оценка результатов выпол-
материалам элек-	ента мощности трансформатора;	нения и защиты
трические машины	б) распределения нагрузки между па-	<i>ЛР №№ 1-7</i>
для заданных	раллельно работающими трансфор-	тестирование
условий эксплуа-	маторами;	Промежуточная аттестация
тации.	в) потерь и построение графика КПД	в форме диф.зачета:
	машины постоянного тока.	зад. 1 — практич.
	-Определение параметров:	зад.2 – практич.
	а) основных параметров асинхронного	зад.3 – практич
	двигателя;	
	б) основных параметров синхронного	
	двигателя;	
	в) машин постоянного тока по пас-	
	портным данным.	
31. Технические	 объяснение принципа действия 	Текущий контроль:
параметры, харак-	однофазного и трехфазного транс-	оценка самостоятельной вне-
теристики и осо-	форматора;	аудиторной работы тем <i>T1-4</i>
бенности различ-	– определения параметров, ха-	Промежуточная аттестация
ных видов элек-	рактеристик и особенностей различ-	в форме диф.зачета:
трических машин.	ных видов электрических машин;	$3a\partial. \hat{I}$ — практич.
	– описание устройства генера-	зад.2 – практич.
	тора и принципа его работы;	зад.3 – практич
	– объяснение принципа действия	_
	синхронной и асинхронной машины;	
	работы электрической машины в ре-	
	жиме генератора.	

Группировка: У1, 3.1.

4. Оценочные средства

Условия проведения диф. зачета: обучающийся выполняет 3 практических задания

- место выполнения учебная аудитория;
- максимальное время выполнения заданий 30 мин.

Критерии оценки:

Оценка выставляется среднеарифметическая по итогам выполненных заданий (№1-3)

4.1. Задания для проведения диф.зачета

4.1.1 Задание №1 - практическое Проверяемые результаты обучения: У1, 3.1,

- Внимательно прочитайте задание:

 $\underline{3}$ адача. В таблице 1 приведены данные трехфазных силовых трансформаторов серии ТМ: полная номинальная мощность $S_{\text{ном}}$; номинальные потери холостого хода $P_{\theta_{\text{ном}}}$ и короткого замыкания $P_{\kappa.\text{ном}}$; коэффициент мощности нагрузки $cos \varphi_2$.

Выполнить расчет:

1. Снижения КПД при номинальной нагрузке по сравнению с его максимальным значением.

Указания:

1. Сведения о заданном трансформаторе приведены в таблице 1

Таблица 1 - Варианты к задаче

Вариант	Тип	S_{HOM} , $\kappa B \cdot A$	$P_{\scriptscriptstyle HOM}, \mathrm{\kappa Br}$	$P_{\kappa. \mathit{HOM}}, \kappa \mathrm{BT}$	$cos \varphi_2$
-	трансформатора	,			ŕ
1.	TM-100/35	100	0,465	1,97	0,80
2.	TM-160/35	160	0,7	2,65	0,85
3.	TM-250/35	250	1,0	3,7	0,85
4.	TM-400/35	400	1,35	5,5	0,80
5.	TM-630/35	630	1,9	7,6	0,75
6.	TM-1000/35	1000	2,75	12,2	0,70
7.	TM-1600/35	1600	3,65	18,0	0,80
8.	TM-2500/35	2500	5,1	25,0	0,75
9.	TM-4000/35	4000	6,7	33,5	0,85
10.	TM-6300/35	6300	9,4	46,5	0,80
11.	TM-6300/35	6300	9,4	46,5	0,80
12.	TM-4000/35	4000	6,7	33,5	0,85
13.	TM-2500/35	2500	5,1	25,0	0,75
14.	TM-1600/35	1600	3,65	18,0	0,80
15.	TM-1000/35	1000	2,75	12,2	0,70
16.	TM-630/35	630	1,9	7,6	0,75
17.	TM-400/35	400	1,35	5,5	0,80
18.	TM-250/35	250	1,0	3,7	0,85
19.	TM-160/35	160	0,7	2,65	0,85
20.	TM-100/35	100	0,465	1,97	0,80
21.	TM-630/35	630	1,9	7,6	0,75
22.	TM-1000/35	1000	2,75	12,2	0,70
23.	TM-1600/35	1600	3,65	18,0	0,80
24.	TM-2500/35	2500	5,1	25,0	0,75
25.	TM-4000/35	4000	6,7	33,5	0,85

26.	TM-6300/35	6300	9,4	46,5	0,80
27.	TM-6300/35	6300	9,4	46,5	0,80
28.	TM-4000/35	4000	6,7	33,5	0,85
29.	TM-2500/35	2500	5,1	25,0	0,75
30.	TM-1600/35	1600	3,65	18,0	0,80

Критерии оценки:

Оценка «отпично» - обучающийся правильно и в полном объеме выполнил расчеты, верно указал единицы измерения всех величин, правильно выполнил приведение единиц измерения всех величин.

Оценка «хорошо» - обучающийся выполнил расчеты, верно указал единицы измерения всех величин, правильно выполнил приведение единиц измерения всех величин, неверно определил одну из требуемых величин, (1-2 вычислительные ошибки) (ответил на один дополнительный вопрос на усмотрение преподавателя).

Оценка «удовлетворительно» - обучающийся выполнил расчеты, указал единицы измерения всех величин, правильно выполнил приведение единиц измерения всех величин, неверно определил две величины. (1 ошибка в ходе решения задачи и 1 вычислительная ошибка), (ответил на два дополнительных вопроса на усмотрение преподавателя).

Оценка «неудовлетворительно» выставляется обучающемуся, не выполнившему задание, имеющему разрозненные, бессистемные знания профессиональной терминологии; не умеющему выделять главное и второстепенное, допускающему ошибки в определении понятий, искажающих их смысл, беспорядочно, неуверенно излагающему материал; не умеющему применять знания для решения практических задач.

Задание №2 - практическое

Проверяемые результаты обучения: У1, 3.1.

- Внимательно прочитайте задание:

<u>Задача.</u> Для асинхронного двигателя серии 4A, сведения о котором приведены в таблице 1.2.

Определить основные параметры:

- 1. Синхронную частоту вращения;
- 2. Активную мощность, потребляемую из сети;
- 3. Номинальный и пусковой токи;
- 4. Число пар полюсов;
- 5. Номинальное скольжение;
- 6. Номинальный, пусковой и максимальный момент;
- 7. Суммарные потери в двигателе.
- 8. Развиваемый момент при снижении напряжения в сети на 10 %.

Указания:

1. Тип двигателя задан в таблице вариантов 1.1.

Таблица 1.1 - Варианты к задаче

Вариант	Тип двигателя	Вариант	Тип двигателя
1	4A132M4У3	16	4A200M4У3
2	4A180M2У3	17	4A200L4У3
3	4A160M4У3	18	4A225M4У3
4	4А112М6У3	19	4A250S4У3
5	4A250S4У3	20	4A250M4У3
6	4A132M4У3	21	4А112М6У3
7	4А180М2У3	22	4А112В6У3
8	4A160M4У3	23	4А132Ѕ6У3

9	4A112M6У3	24	4А132М6У3
10	4A250S4У3	25	4А160Ѕ6У3
11	4А160М6У3	26	4А160М6У3
12	4A180M4У3	27	4А180М6У3
13	4А132М2У3	28	4А200М6У3
14	4А160М6У3	29	4A200L6У3
15	4А112М6У3	30	4А132М6У3

Таблица 1.2 - Технические данные некоторых асинхронных двигателей серии 4А

Тип	ические данные	•	•				3.5 3.5
двигателя	n _н , об/мин	Р _н , кВт	$\eta_{\scriptscriptstyle \mathrm{H}}$	cosφ _H	${ m I}_{\Pi}/{ m I}_{ m H}$	M_{Π}/M_{H}	$M_{\text{max}}/M_{\scriptscriptstyle H}$
4A90L2У3	2880	3	0,85	0,88	6,5	2,0	2,2
4А100Ѕ2У3	2880	5,5	0,88	0,91	7,5	2,0	2,2
4А112М2У3	2900	7,5	0,88	0,88	7,5	2,0	2,2
4А132М2У3	2900	11	0,88	0,90	7,5	1,6	2,2
4А160S2У3	2930	15	0,88	0,91	7,5	1,4	2,2
4А160М2У3	2900	18,5	0,89	0,92	7,5	1,4	2,2
4А180S2У3	2940	22	0,89	0,91	7,5	1,4	2,2
4А180М2У3	2920	30	0,90	0,92	7,5	1,4	2,2
4A200M2У3	2940	37	0,90	0,89	7,5	1,4	2,2
4A200L2У3	2940	45	0,91	0,90	7,5	1,4	2,2
4A225M2У3	2950	55	0,91	0,92	7,5	1,2	2,2
4A250S2У3	2960	75	0,91	0,89	7,5	1,2	2,2
4A250M2У3	2960	90	0,92	0,90	7,5	1,2	2,2
4A100S4У3	1425	3	0,82	0,83	6,5	2,0	2,2
4A100L4У3	1425	4	0,84	0,84	6,5	2,2	2,2
4A112M4У3	1450	5,5	0,86	0,85	7,0	2,0	2,2
4A132S4У3	1450	7,5	0,88	0,86	7,5	2,0	2,2
4A132M4У3	1450	11	0,88	0,87	7,5	2,0	2,2
4A160S4У3	1460	15	0,89	0,88	7,0	1,4	2,2
4A160M4У3	1460	18,5	0,90	0,88	7,0	1,4	2,2
4A180S4У3	1470	22	0,90	0,90	7,0	1,4	2,2
4A180M4У3	1470	30	0,91	0,90	7,0	1,4	2,2
4A200M4У3	1475	37	0,91	0,90	7,0	1,4	2,2
4A200L4У3	1475	45	0,92	0,90	7,0	1,4	2,2
4A225M4У3	1470	55	0,93	0,90	7,0	1,2	2,2
4A250S4Y3	1480	75	0,93	0,90	7,0	1,2	2,2
4A250M4У3	1480	90	0,93	0,91	7,0	1,2	2,2
4А112М6У3	950	3	0,81	0,76	6,0	2,0	2,2
4А112В6У3	950	4	0,82	0,81	6,0	2,0	2,2
4А132S6У3	960	5,5	0,85	0,80	7,0	2,0	2,2
4А132М6У3	960	7,5	0,86	0,81	7,0	2,0	2,0
4А160Ѕ6У3	970	11	0,86	0,86	6,0	1,2	2,2
4А160М6У3	970	15	0,88	0,87	6,0	1,2	2,2
4А180М6У3	970	18,5	0,88	0,87	6,0	1,2	2,0
4А200М6У3	980	22	0,90	0,90	6,5	1,2	2,0
4A200L6У3	980	30	0,90	0,90	6,5	1,2	2,0

Тип двигателя	n _н , об/мин	Рн, кВт	$\eta_{\scriptscriptstyle H}$	сosф _н	I_{Π}/I_{H}	$M_{\scriptscriptstyle \Pi}/M_{\scriptscriptstyle H}$	M _{max} /M _H
4А225М6У3	980	37	0,91	0,89	6,5	1,2	2,0
4A250S6У3	985	45	0,92	0,89	7,0	1,2	2,0
4А250М6У3	985	55	0,92	0,89	7,0	1,2	2,0
4А280Ѕ6У3	985	75	0,92	0,89	7,0	1,2	1,9
4А280М6У3	985	90	0,93	0,89	7,0	1,2	1,9

Критерии оценки:

Оценка «отпично» - обучающийся правильно и в полном объеме выполнил расчеты, верно указал единицы измерения всех величин, правильно выполнил приведение единиц измерения всех величин.

Оценка «хорошо» - обучающийся выполнил расчеты, верно указал единицы измерения всех величин, правильно выполнил приведение единиц измерения всех величин, неверно определил одну из требуемых величин(1-2 вычислительные ошибки), (ответил на один дополнительный вопрос на усмотрение преподавателя).

Оценка «удовлетворительно» - обучающийся выполнил расчеты, указал единицы измерения всех величин, правильно выполнил приведение единиц измерения всех величин, не верно определил две величины, (1 ошибка в ходе решения задачи и 1 вычислительная ошибка), (ответил на два дополнительных вопроса на усмотрение преподавателя).

Оценка «неудовлетворительно» выставляется обучающемуся, не выполнившему задание, имеющему разрозненные, бессистемные знания профессиональной терминологии; не умеющему выделять главное и второстепенное, допускающему ошибки в определении понятий, искажающих их смысл, беспорядочно, неуверенно излагающему материал; не умеющему применять знания для решения практических задач.

Задание №3 - практическое

Проверяемые результаты обучения: У1, 3.1.

- Внимательно прочитайте задание:

Задача. Двигатель постоянного тока параллельного возбуждения имеет следующие данные: номинальная мощность $P_{{\scriptscriptstyle HOM}}$; напряжение питания $U_{{\scriptscriptstyle HOM}}$; номинальная частота вращения $n_{{\scriptscriptstyle HOM}}$; сопротивление обмоток в цепи якоря $\sum r$; сопротивление цепи возбуждения $r_{{\scriptscriptstyle 6}}$, падение напряжения в щеточном контакте щеток $\Delta U_{{\scriptscriptstyle uq}}=2B$. значения перечисленных параметров приведены в таблице 1.1.

Определить параметры:

- 1. Потребляемый двигателем ток в режиме номинальной нагрузки I_{HOM} ;
- 2. Сопротивление пускового реостата $R_{n.p.}$, при котором начальный пусковой ток в цепи якоря двигателя был бы равен $2.5I_{a \, \text{HOM}}$;
 - 3. Начальный пусковой момент M_n ;
 - 4. Частоту вращения n_0 и ток I_0 в режиме холостого хода;
- 5. Номинальное изменение частоты вращения якоря двигателя при сбросе нагрузки.

Таблица 1.1 - Варианты к задаче

Вариант	Рном, кВт	$U_{{\scriptscriptstyle HOM}},{ m B}$	<i>п_{ном}</i> , об∕мин	η ном, %	∑ <i>r</i> , O _M	$r_{\scriptscriptstyle{\theta}}$, Om
1.	25	440	1500	85	0,15	88
2.	15	220	1000	83,8	0,12	73
3.	45	440	1500	88	0,13	88

4.	4,2	220	1500	78	0,15	64
	18			84	· ·	73
5.		220	1200		0,12	
6.	25	440	1500	85	0,15	88
7.	15	220	1000	84	0,12	73
8.	45	440	1500	88	0,13	88
9.	42	220	1500	78	0,15	64
10.	18	220	1200	84	0,12	73
11.	25	440	1500	85	0,15	88
12.	15	220	1000	83,8	0,12	73
13.	45	440	1500	88	0,13	88
14.	4,2	220	1500	78	0,15	64
15.	18	220	1200	84	0,12	73
16.	25	440	1500	85	0,15	88
17.	15	220	1000	84	0,12	73
18.	45	440	1500	88	0,13	88
19.	42	220	1500	78	0,15	64
20.	18	220	1200	84	0,12	73
21.	25	440	1500	85	0,15	88
22.	15	220	1000	83,8	0,12	73
23.	45	440	1500	88	0,13	88
24.	4,2	220	1500	78	0,15	64
25.	18	220	1200	84	0,12	73
26.	25	440	1500	85	0,15	88
27.	15	220	1000	84	0,12	73
28.	45	440	1500	88	0,13	88
29.	42	220	1500	78	0,15	64
30.	18	220	1200	84	0,12	73

Критерии оценки:

Оценка «отлично» - обучающийся правильно и в полном объеме выполнил расчеты, верно указал единицы измерения всех величин, правильно выполнил приведение единиц измерения всех величин.

Оценка «хорошо» - обучающийся выполнил расчеты, верно указал единицы измерения всех величин, правильно выполнил приведение единиц измерения всех величин, неверно определил одну из требуемых величин(1-2 вычислительные ошибки), (ответил на один дополнительный вопрос на усмотрение преподавателя).

Оценка «удовлетворительно» - обучающийся выполнил расчеты, указал единицы измерения всех величин, правильно выполнил приведение единиц измерения всех величин, не верно определил две величины, (1 ошибка в ходе решения задачи и 1 вычислительная ошибка), (ответил на два дополнительных вопроса на усмотрение преподавателя).

Оценка «неудовлетворительно» выставляется обучающемуся, не выполнившему задание, имеющему разрозненные, бессистемные знания профессиональной терминологии; не умеющему выделять главное и второстепенное, допускающему ошибки в определении понятий, искажающих их смысл, беспорядочно, неуверенно излагающему материал; не умеющему применять знания для решения практических задач.

4.1.2. Проверяемые результаты обучения: 31.

Теоретические вопросы (дополнительно)

- 1. Дайте определение трансформатора и поясните его назначение.
- 2. Объясните устройство и принцип действия однофазного трансформатора.
- 3. Поясните какую величину называют коэффициентом трансформации трансформатора?

- 4. Перечислите основные активные части трансформатора и поясните их назначение.
- 5. Расскажите классификацию трансформаторов в зависимости от соотношения количества витков первичной и вторичной обмоток, числа фаз, количества вторичных обмоток, характера связи между первичной и вторичной стороной, назначения и специфики работы.
- 6. Перечислите режимы работы трансформатора.
- 7. Назовите как определяется коэффициент полезного действия трансформатора?
- 8. Объясните с какой целью применяют параллельную работу трансформаторов?
- 9. Перечислите условия включения трансформаторов на параллельную работу?
- 10. Дайте определение «Фазировка трансформатора», для чего и как она выполняется?
- 11. Назовите конструктивное различие между трансформатором и автотрансформатором.
- 12. Объясните принцип передачи мощности из первичной цепи во вторичную у трансформатора и автотрансформатора.
- 13. Назовите достоинства автотрансформатора перед трансформатором?
- 14. Объясните принцип действия генератора переменного тока.
- 15. Назовите назначение контактных колец и щеток в синхронном генераторе?
- 16. Объясните принцип действия асинхронного двигателя.
- 17. Поясните может ли ротор асинхронного двигателя вращаться синхронно с вращающимся полем?
- 18. Объясните устройство трехфазного асинхронного двигателя с короткозамкнутым ротором.
- 19. Объясните устройство трехфазного асинхронного двигателя с фазным ротором.
- 20. Объясните конструкцию короткозамкнутого и фазного роторов.
- 21. Дайте определение скольжение асинхронной машины.
- 22. Перечислите режимы работы асинхронной машины.
- 23. Назовите сходство и различие между асинхронным двигателем и трансформатором.
- 24. Назовите виды потерь, имеющих место в асинхронном двигателе.
- 25. Перечислите достоинства и недостатки пусковых свойств асинхронных двигателей.
- 26. Перечислите способы регулирования частоты вращения асинхронных двигателей.
- 27. Объясните устройство и принцип действия коллекторной машины постоянного тока.
- 28. Назовите участки магнитной цепи машины постоянного тока.
- 29. Перечислите причины, вызывающие искрение на коллекторе.
- 30. Назовите степени искрения, предусмотренные ГОСТом. Дайте каждой из них характеристику и укажите условия допустимости.
- 31. Дайте определение коммутации, периода коммутации.
- 32 Расшифровать условное обозначение двигателя своего варианта.

5. Лист регистрации изменений по дисциплине

Дата	Номер	Изменения	Подпись
	протокола		председателя
	протокола заседания ЦК		председателя ЦК

6. Текущий контроль

Тема 1 Трансформаторы

Устройство, принцип действия и рабочие процессы однофазного трансформатора. Применение трансформаторов. Эксплуатационные характеристики силовых и специальных трансформаторов. Режимы работы

трансформаторов. Характеристики трансформаторов.

Лабораторная работа №1

Исследование двухобмоточного силового трансформатора.

Трехфазные и измерительные трансформаторы. Схемы соединения обмоток трёхфазных трансформаторов. Особенности конструкции, классификация и область применения трёхфазных трансформаторов. Автотрансформатор. Устройство и особенности рабочего процесса автотрансформаторов, достоинства, недостатки и область применения.

Лабораторная работа №2

Опытное определение групп соединения 3-х фазного трансформатора

Самостоятельная работа обучающихся

- работа с учебной (основной и дополнительной) литературой;
- работа с нормативными материалами, стандартами;

Задание№1: (теоретические вопросы)

Ответить на вопросы.

- 1. Особенности трансформаторов для дуговой сварки. [л. 1, с. 92-94]
- 2. Устройство и принцип действия трансформатора. Роль стального магнитопровода. [л. 1, с. 16-25].
- 3. Опыт холостого хода трансформатора. Какие величины определяют из этого опыта? [л. 1, с. 43-46]
- 4. Опыт короткого замыкания трансформатора. Какие величины определяют из этого опыта? [л. 1, с. 46-49]
- 5. Условия включения трансформаторов на параллельную работу. К каким последствиям приводит несоблюдение этих условий? [л. 1, с. 66-69]
- 6. Способы и группы соединения трехфазных трансформаторов. [л. 1, с. 61-64]
- 7. Потери и КПД трансформатора. [л. 1, с. 54-57]
- 8. Понятие о регулировании напряжения трансформатора при нагрузке. [л. 1, с. 57-60]
- 9. Трехфазные трансформаторы и схемы соединения их обмоток. [л. 1, с. 36-38]
- 10. Назначение и особенности измерительных трансформаторов. [л. 1, с. 243-244]

Задание№2: (задача)

- Внимательно прочитайте задание:

Задача. В таблице 1 приведены данные трехфазных силовых трансформаторов серии ТМ: полная номинальная мощность S_{HOM} ; номинальные потери холостого хода $P_{\theta_{HOM}}$ и короткого замыкания $P_{\kappa,HOM}$; коэффициент мощности нагрузки $cos\phi_2$.

Выполнить расчет:

1 Снижения КПД при номинальной нагрузке по сравнению с его максимальным значением.

Указания:

1 Сведения о заданном трансформаторе приведены в таблице 1

Таблица 1 - Варианты к задаче

Вариант	Тип трансформатора	$S_{\text{ном}}$, к $\mathbf{B} \cdot \mathbf{A}$	$P_{\scriptscriptstyle HOM}$, к $ m BT$	$P_{\kappa. \mathit{HOM}}, \mathrm{кBT}$	cosφ ₂
1.	TM-100/35	100	0,465	1,97	0,80
2.	TM-160/35	160	0,7	2,65	0,85
3.	TM-250/35	250	1,0	3,7	0,85
4.	TM-400/35	400	1,35	5,5	0,80
5.	TM-630/35	630	1,9	7,6	0,75

6.		TM-1000/35	1000	2,75	12,2	0,70
7.		TM-1600/35	1600	3,65	18,0	0,80
8.		TM-2500/35	2500	5,1	25,0	0,75
9.		TM-4000/35	4000	6,7	33,5	0,85
10).	TM-6300/35	6300	9,4	46,5	0,80

Тема 2. Асинхронные машины

Круговое вращающееся магнитное поле. Асинхронный и синхронный принципы вращения.

Устройство и принцип действия асинхронного двигателя. Основные параметры асинхронного двигателя и их связь со скольжением. Электромагнитный момент и механическая характеристика двигателя. Пуск, реверс асинхронных двигателей. Регулирование частоты вращения асинхронных двигателей.

Лабораторная работа №3

Исследование 3-х фазного асинхронного двигателя

Самостоятельная работа обучающихся

- работа с учебной (основной и дополнительной) литературой;
- работа с нормативными материалами, стандартами;
- работа в сети Интернет по темам:

Тема 3. Синхронные машины

Устройство и принцип действия синхронного генератора и двигателя. Синхронные двигатели. Потери и КПД синхронной машины.

Лабораторная работа №4

Исследование 3-х фазного синхронного генератора.

Лабораторная работа №5

Включение 3-х фазного синхронного генератора

на параллельную работу.

Задание№1: (теоретические вопросы)

Ответить на вопросы.

- 1. Принцип действия синхронного генератора. [л. 1, с. 98-99]
- 2. Принцип действия асинхронного двигателя. [л. 1, с. 100-101]
- 3. Пуск синхронных двигателей. [л. 1, с. 292-295]
- 4. Устройство статора машины переменного тока и основные понятия об обмотках статора. [л. 1, с. 102-104]
- 5. Режим работы асинхронной машины. [л. 1, с. 137-140]
- 6. Принцип действия и пуск однофазного асинхронного двигателя. [л. 1, с. 208-211]
- 7. Магнитодвижущая сила трехфазной обмотки статора. Вращающееся магнитное поле. [л. 1, с. 129-131]
- 8. Типы синхронных машин и их устройство. [л. 1, с. 242-247]
- 9. Включение синхронных генераторов на параллельную работу. [л. 1, с. 270-272]
- 10. Устройство трехфазного асинхронного двигателя с короткозамкнутым ротором. [л. 1, с. 140-143]
- 11. Потери и КПД асинхронного двигателя. [л. 1, с. 162-165]
- 12. Способы регулирования частоты вращения асинхронных двигателей. [л. 1, с. 302-306]
- 13. Устройство асинхронного двигателя с фазным ротором. [л. 1, с. 143-145]
- 14. Способы пуска асинхронного двигателя с короткозамкнутым ротором. [л. 1, с. 196-199]
- 15. Пуск двигателя с фазным ротором. [л. 1, с. 292-295]

Задание№2: (задача)

- Внимательно прочитайте задание:

<u>Задача.</u> Для асинхронного двигателя серии 4A, сведения о котором приведены в таблице 1.2.

Определить основные параметры:

- 1 Синхронную частоту вращения;
- 2 Активную мощность, потребляемую из сети;

- 3 Номинальный и пусковой токи;
- 4 Число пар полюсов;
- 5 Номинальное скольжение;
- 6 Номинальный, пусковой и максимальный момент;
- 7 Суммарные потери в двигателе.
- 8 Развиваемый момент при снижении напряжения в сети на 10 %.

Указания:

1 Тип двигателя задан в таблице вариантов 1.1.

Таблица 1.1 - Варианты к задаче

Вариант	Тип двигателя	Вариант	Тип двигателя
1	4A132M4У3	16	4A200M4У3
2	4A180M2У3	17	4A200L4У3
3	4A160M4У3	18	4A225M4У3
4	4А112М6У3	19	4A250S4У3
5	4A250S4У3	20	4A250M4У3
6	4A132M4У3	21	4А112М6У3
7	4A180M2У3	22	4А112В6У3
8	4A160M4У3	23	4А132Ѕ6У3
9	4А112М6У3	24	4А132М6У3
10	4A250S4У3	25	4А160Ѕ6У3

Таблица 1.2 - Технические данные некоторых асинхронных двигателей серии 4А

Тип	n _н , об/мин	Р _н , кВт	$\eta_{\scriptscriptstyle \mathrm{H}}$	cosφ _H	I_{Π}/I_{H}	M_{Π}/M_{H}	$M_{max}/M_{\scriptscriptstyle H}$
двигателя		•	•	·			
4A90L2У3	2880	3	0,85	0,88	6,5	2,0	2,2
4A100S2У3	2880	5,5	0,88	0,91	7,5	2,0	2,2
4А112М2У3	2900	7,5	0,88	0,88	7,5	2,0	2,2
4A132M2У3	2900	11	0,88	0,90	7,5	1,6	2,2
4A160S2У3	2930	15	0,88	0,91	7,5	1,4	2,2
4А160М2У3	2900	18,5	0,89	0,92	7,5	1,4	2,2
4A180S2У3	2940	22	0,89	0,91	7,5	1,4	2,2
4A180M2У3	2920	30	0,90	0,92	7,5	1,4	2,2
4A200M2У3	2940	37	0,90	0,89	7,5	1,4	2,2
4A200L2У3	2940	45	0,91	0,90	7,5	1,4	2,2
4A225M2У3	2950	55	0,91	0,92	7,5	1,2	2,2
4A250S2У3	2960	75	0,91	0,89	7,5	1,2	2,2
4A250M2У3	2960	90	0,92	0,90	7,5	1,2	2,2
4A100S4У3	1425	3	0,82	0,83	6,5	2,0	2,2
4A100L4У3	1425	4	0,84	0,84	6,5	2,2	2,2
4А112М4У3	1450	5,5	0,86	0,85	7,0	2,0	2,2
4А132S4У3	1450	7,5	0,88	0,86	7,5	2,0	2,2
4А132М4У3	1450	11	0,88	0,87	7,5	2,0	2,2
4А160S4У3	1460	15	0,89	0,88	7,0	1,4	2,2
4А160М4У3	1460	18,5	0,90	0,88	7,0	1,4	2,2
4A180S4У3	1470	22	0,90	0,90	7,0	1,4	2,2
4А180М4У3	1470	30	0,91	0,90	7,0	1,4	2,2
4А200М4У3	1475	37	0,91	0,90	7,0	1,4	2,2
4A200L4У3	1475	45	0,92	0,90	7,0	1,4	2,2
4A225M4У3	1470	55	0,93	0,90	7,0	1,2	2,2

Тип двигателя	n _н , об/мин	Рн, кВт	$\eta_{\scriptscriptstyle \mathrm{H}}$	cosφ _H	$I_{\scriptscriptstyle \Pi}/I_{\scriptscriptstyle H}$	$M_{\scriptscriptstyle \Pi}/M_{\scriptscriptstyle H}$	$M_{\text{max}}/M_{\scriptscriptstyle H}$
4A250S4У3	1480	75	0,93	0,90	7,0	1,2	2,2
4A250M4Y3	1480	90	0,93	0,91	7,0	1,2	2,2
4А112М6У3	950	3	0,81	0,76	6,0	2,0	2,2
4А112В6У3	950	4	0,82	0,81	6,0	2,0	2,2
4A132S6У3	960	5,5	0,85	0,80	7,0	2,0	2,2
4А132М6У3	960	7,5	0,86	0,81	7,0	2,0	2,0
4A160S6У3	970	11	0,86	0,86	6,0	1,2	2,2
4А160М6У3	970	15	0,88	0,87	6,0	1,2	2,2
4А180М6У3	970	18,5	0,88	0,87	6,0	1,2	2,0
4А200М6У3	980	22	0,90	0,90	6,5	1,2	2,0
4A200L6У3	980	30	0,90	0,90	6,5	1,2	2,0
4А225М6У3	980	37	0,91	0,89	6,5	1,2	2,0
4A250S6У3	985	45	0,92	0,89	7,0	1,2	2,0
4А250М6У3	985	55	0,92	0,89	7,0	1,2	2,0
4A280S6У3	985	75	0,92	0,89	7,0	1,2	1,9
4А280М6У3	985	90	0,93	0,89	7,0	1,2	1,9

Тема 4. Электрические машины постоянного тока

Тема 3.1 Принцип действия и устройство электрических машин постоянного тока

Принцип работы. Работа машины в режиме генератора. Работа машины в режиме двигателя. Принцип обратимости. Устройство машины постоянного тока. Потери и коэффициент полезного действия МПТ. Виды возбуждения машин постоянного тока. Схемы пуска, реверса двигателей постоянного тока. Регулирование скорости вращения двигателей постоянного тока по якорю и регулирование по обмотке возбуждения.

Лабораторная работа№6.

Исследование двигателя постоянного тока параллельного возбуждения.

Лабораторная работа№7.

Исследование двигателя постоянного тока последовательного возбуждения.

Самостоятельная работа обучающихся

- работа с учебной (основной и дополнительной) литературой;
- работа с нормативными материалами, стандартами;
- работа в сети Интернет по темам:

Задание№1: (теоретические вопросы)

Ответить на вопросы.

- 1. Потери и коэффициент полученного действия машины постоянного тока. [л. 1, с. 405-408]
- 2. Явление кругового огня в коллекторе. Причины возникновения и способы устранения. [л. 1, с. 375]
- 3. Принцип самовозбуждения машин постоянного тока. Генератор параллельного возбуждения. [л. 1, с. 383-385]
- 4. Двигатель смешанного возбуждения, его характеристики и регулирование частоты вращения. [л. 1, с. 403-405]
- 5. Двигатель последовательного возбуждения, его характеристики и регулирование частоты вращения. [л. 1, с. 400-403]
- 6. Двигатель параллельного возбуждения, его характеристики и регулирование частоты вращения. [л. 1, с. 391-398]
- 7. Способы возбуждения машин постоянного тока. [л. 1, с. 359]
- 8. Устройство машины постоянного тока. [л. 1, с. 324-328]
- 9. Принцип действия электродвигателя постоянного тока. Роль коллектора в двигателе. [л. 1, с. 322-323]

10. Принцип действия генератора постоянного тока. Роль коллектора в генераторе. [л. 1, с. 322-323]

Задание№2: (задача)

- Внимательно прочитайте задание:

Задача. Двигатель постоянного тока параллельного возбуждения имеет следующие данные: номинальная мощность $P_{\text{ном}}$; напряжение питания $U_{\text{ном}}$; номинальная частота вращения $n_{\text{ном}}$; сопротивление обмоток в цепи якоря $\sum r$; сопротивление цепи возбуждения r_6 , падение напряжения в щеточном контакте щеток $\Delta U_{uq} = 2B$. значения перечисленных параметров приведены в таблице 1.1.

Определить параметры:

- 1 Потребляемый двигателем ток в режиме номинальной нагрузки $I_{\text{ном}}$;
- 2 Сопротивление пускового реостата $R_{n.p.}$, при котором начальный пусковой ток в цепи якоря двигателя был бы равен $2.5I_{a \text{ ном}}$;
- 3 Начальный пусковой момент M_n ;
- 4 Частоту вращения n_0 и ток I_0 в режиме холостого хода;
- 5 Номинальное изменение частоты вращения якоря двигателя при сбросе нагрузки.

Таблица 1.1 - Варианты к задаче

	1	r 1				
Вариант	$P_{\scriptscriptstyle HOM}$, к ${ m B}{ m T}$	$U_{{\scriptscriptstyle HOM}},{ m B}$	<i>п_{ном}</i> , об∕мин	$\eta_{\scriptscriptstyle HOM},$ %	$\sum r$, Ом	r_{θ} , Ом
1.	25	440	1500	85	0,15	88
2.	15	220	1000	83,8	0,12	73
3.	45	440	1500	88	0,13	88
4.	4,2	220	1500	78	0,15	64
5.	18	220	1200	84	0,12	73
6.	25	440	1500	85	0,15	88
7.	15	220	1000	84	0,12	73
8.	45	440	1500	88	0,13	88
9.	42	220	1500	78	0,15	64
10.	18	220	1200	84	0,12	73